Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  engine lubrication oil
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule opisano powody koniecznej dywersyfikacji zespołów napędowych i stosowanych do nich nośników energii wynikające z transformacji energetycznej transportu. Prowadzone na bieżąco badania i analizy dowodzą, że zasadne jest, aby w okresie przejściowym, do czasu całkowitej elektryfikacji transportu, tłokowe silniki spalinowe nadal stanowiły główną siłą napędową w transporcie, szczególnie komercyjnym. Wiąże się to z promowaniem dekarbonizacji paliw, aby przeciwdziałać zmianom klimatu. W związku z tym paliwa o zerowej/zmniejszonej emisji ditlenku węgla, takie jak metan, wodór, etanol, metanol, a nawet amoniak, odgrywają coraz większą rolę. Powyżej wskazane kierunki zmian w zakresie zespołów napędowych i paliw mają bezpośredni wpływ na modyfikację formulacji środków smarowych stosowanych w przemyśle motoryzacyjnym. W konsekwencji przemysł środków smarowych musi dywersyfikować się w kierunku środków smarowych dostosowanych do wymagań różnorodnych zespołów napędowych, mając na uwadze konieczność zwiększania ich sprawności, osiągów i trwałości przy równoczesnym zmniejszeniu szkodliwych emisji i optymalizacji kosztów produkcji. Wymaga to pokonania wielu barier związanych ze sprzecznymi oczekiwaniami stawianymi olejom smarowym np. przez silniki spalinowe, takimi jak m.in.: udział w tworzeniu emisji pierwotnej, bezpieczeństwo i niezawodność funkcjonowania układów oczyszczania spalin, a także współdziałanie z paliwami o różnym składzie. W artykule opisano wymagania stawiane przede wszystkim smarowym olejom silnikowym w zależności od typu zespołu napędowego i stosowanego do niego paliwa. Zwrócono szczególną uwagę na charakterystyczne dla określonego paliwa wyzwania, jakim musi sprostać w silniku współpracujący z nim smarowy olej silnikowy. W przypadku tłokowych silników spalinowych podkreślono konieczność rozwiązania problemu coraz większego udziału spalanego oleju smarowego w całkowitej emisji cząstek stałych. Wskazano też w tym aspekcie na zalety i perspektywy stosowania paliw syntetycznych. Omówiono do tej pory bardzo mało znane problemy, jakim musi przeciwdziałać silnikowy olej smarowy w przypadku napędów hybrydowych. Wskazano na konsekwencje i szczególne wymagania stawiane smarowym olejom silnikowym w przypadku stosowania obecnie mało spopularyzowanych, ale zdecydowanie perspektywicznych paliw, jak wodór i amoniak. W ostatniej części artykułu opisano w dużej części odmienne wymagania, jakie stawia się olejom smarowym do elektrycznych zespołów napędowych. W tym przypadku olej smarowy stosowany w skrzyniach biegów coraz częściej pełni równocześnie funkcję płynu do chłodzenia silników elektrycznych z chłodzeniem bezpośrednim. Bezpośredni kontakt oleju smarowego z elementami zespołów elektrycznych sprawia, że bardzo ważne są jego właściwości elektroizolacyjne. Generalnie olej smarowy powinien poprawić sprawność mechaniczną i zmniejszyć straty hydrauliczne przekładni w celu zmniejszenia zużycia energii elektrycznej i emisji CO2 pojazdu elektrycznego powstającej podczas produkcji energii elektrycznej. Dodatkowa trudność przy opracowywaniu środków smarowych do napędów elektrycznych polega na tym, że do tej pory nie ma sprecyzowanych wymagań technicznych dla płynów eksploatacyjnych przeznaczonych do pojazdów elektrycznych. Brak jest też wielu znormalizowanych metod badawczych i określenia zakresu niezbędnych badań przedmiotowych płynów.
EN
The article explores the rationale behind the necessary diversification of powertrains and the energy carriers used in the energy transformation of transport. Ongoing research and analyses indicate that it practical for piston internal combustion engines to remain the primary propulsion system used in transport, commercial transport in particular, during the transitional phase leading to complete electrification of transport. The promotion of fuel decarbonization is a critical step in combating climate change. As a result, zero or low carbon fuels such as methane, hydrogen, ethanol, methanol and even ammonia are becoming increasingly significant. These developments in powertrains and fuels direct influence the necessary changes in lubricants used in the automotive industry. Therefore, the lubricant industry must diversify into lubricants designed to meet the requirements of a wide variety of powertrains. This diversification should aim to enhance efficiency, performance and durability, simultaneously reducing harmful emissions and optimizing production costs. This requires overcoming a number of barriers related to the conflicting requirements placed on lubricating oils by, e.g., internal combustion engines. These requirements include contributing to the reduction of primary emissions, safe and reliable operation of exhaust aftertreatment systems, and the interaction with fuels of different compositions. The article specifically details the requirements for engine oils, depending on the powertrains and fuels used. Particular attention was paid to the associated with the compatibility of engine oils with specific fuels. In the case of reciprocating internal combustion engines, the need to address the increasing contribution of burnt engine oils to total particulate emissions was highlighted. The advantages and future prospects for the use of synthetic fuels are discussed in this context. Additionally, the article delves into the lesser-known problems that engine oils must counteract in hybrid drive systems. The implications and specific requirements for engine oils when using currently underutilized but definitely promising fuels such as hydrogen and ammonia are discussed as well. The final section of the article extensively describes the various requirements placed on lubricating oils for electric powertrains. In electric power units, the lubricating oil used in transmissions increasingly commonly serve also the purpose of a cooling fluid for direct-cooling electric motors. The direct contact of lubricating oil with the components of electrical assemblies elevates the importance of its electrical insulating properties. In general, lubricating oils should improve mechanical efficiency and reduce hydraulic losses of a transmission in order to reduce electricity consumption and CO2 emissions of an electric vehicle generated during the generation of electricity. An added challenge in the development of lubricants for electric drive systems is the absence of specified technical requirements for fluids in electric vehicles to date. Additionally, there is a lack of standardization of test methods and definition of the scope of the necessary tests for these fluids.
PL
W nowoczesnych, doładowanych silnikach z zapłonem iskrowym i bezpośrednim wtryskiem paliwa zwiększanie ciśnienia powietrza w układzie dolotowym jest sposobem na podwyższenie sprawności silnika i jego osiągów, ale także na optymalizację procesu spalania i zmniejszenie emisji CO2. Jednak wysokie doładowanie silników i zmniejszanie ich objętości skokowej powoduje pojawienie się problemów związanych z różnymi rodzajami nienormalnego spalania, wśród których wyróżnia się LSPI (low speed pre-ignition) – przedwczesny zapłon w zakresie małej prędkości obrotowej i dużych obciążeń silnika. Występowanie LSPI może prowadzić do poważnych uszkodzeń silnika, w tym między innymi do: pęknięcia tłoków, wygięcia korbowodów oraz innych zniszczeń elementów wewnętrznych silnika. W artykule opisano różnice pomiędzy przedwczesnym zapłonem LSPI oraz zjawiskami typowego spalania stukowego oraz tzw. superstuku. Wyjaśniono, że spalanie stukowe oraz LSPI są odrębnymi zjawiskami, różniącymi się mechanizmami powstawania. Opisano skomplikowany mechanizm powstawania LSPI. Wyjaśniono, dlaczego w przeciwieństwie do konwencjonalnego spalania stukowego występowanie LSPI jest zjawiskiem nieprzewidywalnym i nie można mu zapobiegać poprzez regulację kąta wyprzedzenia zapłonu i zwiększenie liczby oktanowej benzyny. Wyniki dotychczas przeprowadzonych badań dowodzą, że prawdopodobnie główną przyczyną występowania LSPI jest samozapłon kropelek silnikowego oleju smarowego w komorach spalania silnika. Jednak wskazują też na wiele czynników, które mogą powodować LSPI w tym: konstrukcję silnika, warunki jego pracy, a także kompozycję silnikowego oleju smarowego i paliwa. W przypadku silnikowego oleju smarowego największy wpływ na LSPI ma skład chemiczny dodatków detergentowych. W mniejszym stopniu także inne dodatki uszlachetniające i skład silnikowego oleju smarowego mogą wpływać na LSPI. Baza olejowa ma też wpływ, chociaż mniejszy, na LSPI. Ma tu znaczenie zarówno jakość bazy olejowej, jak i jej lepkość. Przedyskutowane w artykule wyniki sugerują, że opracowanie odpowiedniej formulacji smarowego oleju silnikowego może przyczynić się do ograniczenia występowania zjawiska LSPI. Jednak sama optymalizacja składu silnikowego oleju smarowego nie doprowadzi do całkowitego wyeliminowania zjawiska LSPI.
EN
: In modern DISI (Direct Injected Spark Ignited) and supercharged engines, increasing the intake pressure is a way to achieve better performance, better fuel economy and, consequently, lower CO2 emission. However, boosted DISI and downsized engines are suffering from a series of abnormal combustion problems of which the LSPI (Low Speed Pre-Ignition) is an important part. LSPI can lead to potential serious damage of the engine (e.g. broken pistons, bent connecting rods or severe engine failure). The article describes the difference between pre-ignition, LSPI, knocking and super-knocking. Knocking and LSPI are two distinct events, caused by two different phenomena. The complex mechanism occurring in LSPI has been outlined. It explains why, unlike conventional knocking, an LSPI event cannot be predicted and corrected by adjusting spark timing or increasing the octane number. More current research suggest that the auto-ignition of oil droplets is probably the major cause of LSPI. However, many factors can cause LSPI, including: engine design, engine operating conditions as well lubricant and fuel composition. With regard to engine lubricating oil, the most noticeable impact has been from detergent chemistry. Aside from the detergent system, there are many other additive and lubricant compositions that can affect LSPI. Furthermore, base oils also affect LSPI events. Both the quality of the base stock and the viscosity can have secondary effects on LSPI. The discussed results suggest that appropriate engine lubricating oil formulations may enable the mitigation of LSPI. However, the complete elimination of LSPI will hardly be achieved by modifying only the oil properties.
PL
Jednym z ważniejszych procesów, mającym wpływ m.in. na trwałość i niezawodność silnika oraz na zużycie paliwa i emisję toksycznych składników spalin, jest proces smarowania wszystkich węzłów tarcia. Ze względu na sposób i charakter smarowania tulei cylindrowej nieuniknione jest przedostawanie się części oleju smarowego do komory spalania, przez co poza samym procesem smarowania, bierze on również częściowo udział w procesie spalania. W artykule przedstawiono możliwości wykorzystania metod termoanalitycznych do określenia wybranych właściwości oleju takich jak np. temperatura krystalizacji, temperatura samozapłonu, produkty rozkładu termicznego.
EN
One of the most important process in the internal combustion engine, which has the influence on durability and reliability, but also on fuel consumption and emission, is the lubrication of all engine kinematic pairs. For the sake of cylinder liner lubrication method and character, it is unavoidable to get the lubricating oil to the combustion chamber. As a consequence the lubricating oil takes part in the combustion process. In the paper the prospects of evaluation of selected engine lubricating oil parameters, such as cristallization temperature, self ignition temperature or thermal decomposition products, are presented.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.