Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  energy gap
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The primary goal of this study is to determine whether the produced CaZnO3 perovskite compound may be used in the production of solar cells and diodes. CaZnO3 perovskite thin films have been prepared and examined using scanning electron microscopy (SEM), X-ray spectroscopy, and UV spectroscopy. The films were made using the chemical spray pyrolysis deposition (CSPD) method; they were prepared from a mixture of 0.6 g of CaCl2 and ZnCl2 with 1.2 g of KOH, and CaZnO3 thin films were deposited on a glass substrate at a temperature of 150°C. Optical properties such as transmittance (T), absorbance (A), reflectance (R), the refractive index (n), and extinction coefficient (k) were studied. The energy gap varied from 3.19 eV for films without KCl to 3.22 eV for films with KCl, indicating that the presence of KCl had an impact on the energy gap; furthermore, the average particle’s diameter for films with KCl was about 112.28 nm and decreased to 53.86 nm when KCl was removed from the solutions to obtain pure in CaZnO3 perovskite thin films.
PL
Wpływ KCl na właściwości optyczne i strukturalne cienkich warstw perowskitu CaZnO3 Głównym celem badania było określenie, czy wytworzony perowskitowy związek CaZnO3 może zostać wykorzystany do produkcji ogniw fotowoltaicznych i diod. Przygotowano cienkie warstwy perowskitu CaZnO3, które zostały zbadane za pomocą skaningowego mikroskopu elektronowego (SEM), spektrometru rentgenowskiego i spektrometru UV. Warstwy zostały wykonane przy użyciu metody chemicznego osadzania pirolitycznego (CSPD); przygotowano je z mieszaniny 0,6 g CaCl2 i ZnCl2 z 1,2 g KOH, cienkie warstwy CaZnO3 osadzono na szklanym podłożu w temperaturze 150°C. Zbadano właściwości optyczne, takie jak transmitancja (T), absorbancja (A), współczynnik odbicia (R), współczynnik załamania światła (n) i współczynnik ekstynkcji (k). Przerwa energetyczna wynosiła od 3,19 eV w wypadku warstw bez KCl do 3,22 eV dla warstw z KCl, co świadczy o tym, że obecność KCl miała wpływ na przerwę energetyczną. Średnica cząstek w warstwach zawierających KCl wynosiła średnio 112,28 nm i zmniejszyła się do 53,86 nm, gdy z roztworów usunięto KCl w celu uzyskania czystych postaci cienkich warstw CaZnO3.
2
Content available remote Optoelectronics applications of electrodeposited p- and n-type Al2Se3 thin films
EN
In this paper, energy band gaps and electrical conductivity based on aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique, with graphite and carbon as cathode and anode, respectively. Synthesis is done at 353 K from an aqueous solution of analytical grade selenium dioxide (SeO2), and aluminum chloride (AlCl2·7H2O). Junctions-based Al2Se3thin films from a controlled medium of pH 2.0 are deposited on fluorine-doped tin oxide (FTO) substrate using potential voltages varying from 1,000 mV to 1,400 mV and 3 minutes −15 minutes respectively. The films were characterized for optical properties and electrical conductivity using UV-vis and photoelectrochemical cells (PEC) spectroscopy. The PEC reveals a transition in the conduction of the films from p-type to n-type as the potential voltage varies. The energy band gap reduces from 3.2 eV to 2.9 eV with an increase in voltage and 3.3 eV to 2.7 eV with increase in time. These variations indicate successful fabrication of junction-based Al2Se3 thin films with noticeable transition in the conductivity type and energy band gap of the materials. Consequently, the fabricated Al2Se3can find useful applications in optoelectronic devices.
EN
Theoretical formalism based on the orthogonalized plane wave method supplemented by a potential scaling scheme was used to predict the temperature dependence of energy gap of CuSi2P3 semiconductor. A computer code in Pascal was used to perform the variation of fundamental energy gap with temperature in the range of 150 K to 800 K. The dependence of energy gap on temperature for lattice dilation contribution, lattice vibration contribution and total temperature effect were performed separately. The results revealed that, as temperature increases, the top of the valence band and the bottom of the conduction band increase, while the energy band gap decreases. Generally, at low temperatures, the energy gap varies slowly and exhibits a nonlinear dependence and approaches linearity as temperature increases. The calculated energy gap of CuSi2P3 at T = 300 K is 0.4155 eV. The temperature coefficients in the linear region due to lattice dilation contribution, lattice vibration contribution and total temperature effect were calculated as –1.101 × 10−5 eV/K, –1.637 × 10−4 eV/K and –1.7523 × 10−4 eV/K, respectively. Also, the ratio of temperature coefficient of the energy gap due to LV contribution to its value and LD contribution in the linear region is equal to 14.868. That ratio is compared to those of CuGe2P3 and III-V compounds, where those of the latter show a systematic change with Eg. Moreover, the Eg of all the compounds shows a quadratic dependence on the inverse of mean bond length.
EN
Single phase, adherent films of copper oxide nanowires (CuO NWs) were successfully grown on a glass substrate. Titanium nanofilm was pre-coated on the glass substrate to assist the growth of a layer adherent to the substrate. The copper film of 1.5 μm thickness was deposited via physical vapor deposition technique followed by thermal oxidation in air at various temperatures for 4 h. The product was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV-Vis) and Fourier transformation infrared (FT-IR) spectroscopy to find the crystal structure, morphology, phases, and optical properties of the deposited films. The CuO NWs film with 60 % transmittance at wavelengths greater than 800 nm was obtained. It can be used as an infrared thermal imaging filter and in optoelectronic devices. The fabricated temperature sensor exhibited high sensitivity in the temperature range of 20 °C to 180 °C.
EN
The results of multi-angle ellipsometrical measurements of thermally evaporated Inx(AsSe3)1-x (x = 0, 0.01, 0.05) films are presented. Optical parameters n and Eg of thin Inx(AsSe3)1-x films show that indium atoms were incorporated into the host matrix of AsSe3 forming distinct features depending on the indium concentration. Refractive index, n, was found to decrease with the addition of In to the binaryAsSe3. The real and imaginary parts of the dielectric function, ε' and ε" were also calculated from the obtained data and correlated with In concentration. It was found that ε' decreases with the increaseof In content while ε" increases with the increase of In content. Absorption edge is shifted towards lower photon energy with the increase of In content. As a result, the optical energy gap decreases with increasing In content. This has been correlated with the chemical character of the additive as well as with the structural and bonding aspects of the amorphous composition. Nonlinear optical constants (Χ(3) and n2) were determined from linear optical parameters using semi-empirical relations in the long wavelength limit.
EN
Fe2O3 thin films that doped by NiO were obtained on glass substrates by the chemical spray pyrolysis technique, and annealed at 450 ºC and 500 ºC. The effect of annealing on optical properties was studied by recording the absorbance spectra using UV-Visible spectrophotometer. The refractive index decreases with increasing annealing temperature, such as an optical band gap that decreases from 2.68 eV before annealing to 2.58 eV after annealing of 500 ºC. Absorption coefficient and extinction coefficient increase with increasing annealing temperature.
EN
A single crystal of iron (II) carbohydrazide perchlorate [FeII (CHZ)3](ClO4)2 (FeCP), a novel, lead-free, energetic coordination compound, was synthesized and its structure determined by X-ray single crystal diffraction for the frst time. The crystal belongs to the monoclinic system P2(1)/n space group, with a = 1.0066(2) nm, b = 0.8458(2) nm, c = 2.1194(4) nm, β = 100.693(3)° and Z = 4. The central Fe(II) ion is coordinated to three bidentate carbohydrazide units through the carbonyl oxygen atom and an amino nitrogen atom, forming a six-coordinated, non-centrosymmetric complex cation. The thermal analyses by differential scanning calorimetry and thermogravimetry show that the onset temperature of thermal decomposition (152.7 °C) and the critical temperature of thermal explosion of FeCP (161.2 °C) are both much lower than those of other transition metal carbohydrazide perchlorate compounds, and also those of some other primary explosives in service. FeCP has a high enthalpy of combustion, as measured by oxygen bomb calorimetry. The impact, friction and fame sensitivity tests indicate that FeCP is extremely sensitive and hazardous. Unexpected explosions occurred even during the operational processes. In order to explore the intrinsic cause of these explosions, theoretical calculations of the orbital energies were performed based on DTF. These results reveal that the impact sensitivity is positively correlated with the energy gap between HOMO and LUMO: the smaller energy gap results in the higher impact sensitivity.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.