Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 83

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  energy demand
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
According to the Energy Performance of Buildings Directive (EPBD), all new buildings must be constructed using technologies that will ensure almost zero energy consumption by the building through renewable energy sources and an energy-efficient thermal envelope. To assess the possibilities of reconstructing an existing building following the requirements of the EPBD in Ukraine, we have presented possible ways to modernise an office in Kyiv using renewable energy sources (biomass, heat pump) at different levels of thermal protection. Based on dynamic modelling results in the DesignBuilder software environment, the technical, environmental and economic aspects of building modernisation using near-Zero Energy Buildings (nZEB) technologies have been investigated. In particular, the authors have analysed the possibilities of using different modes of heat pump operation to provide heat to a building of different levels of thermal protection in the GeoTSOL software environment. The results obtained can be used to assess the benefits of improving the energy efficiency of a building using different types of renewable energy sources.
PL
Poważnym wyzwaniem naszego wieku jest globalne zapewnienie rozwoju zrównoważonego we wszystkich dziedzinach życia. Rozwój zrównoważony (sustainability) jest problemem egzystencjonalnym „być albo nie być” naszej planety, stąd konieczność wykorzystywania odnawialnych źródeł energii, ale przede wszystkim jest to problem finansowy, zarówno w skali makroekonomicznej jak też dotykającym każdego człowieka. Gwałtownie rosnące ceny energii są jednym z kluczowych aspektów budowania obiektów energooszczędnych lub samowystarczalnych energetycznie. Coraz powszechniejsze stają się instalacje fotowoltaiczne oraz pompy ciepła, których celem jest redukcja kosztów użytkowania obiektu oraz czynny udział w tworzeniu samowystarczalnej energetycznie gospodarki. Celem niniejszego artykułu jest analiza kosztów użytkowania wybranego obiektu budowlanego w przypadku zastosowania fotowoltaiki wraz z technologią pompy ciepła oraz porównanie ich z kosztami korzystania z innej formy ogrzewania. Do kalkulacji przyjęto średnie wartości cen w bieżącym roku oraz zasady rozliczeniowe funkcjonujące od stycznia 2022 r. Kalkulację przeprowadzono na konkretnym ośrodku, o powierzchni 620 m2.
EN
The serious challenge of our century is to ensure sustainable development globally in all areas of life. Sustainability is an existential problem „to be or not to be” of our planet, hence the need to use renewable energy sources, but above all it is a financial problem, both on a macroeconomic scale and affecting every human being. Rapidly rising energy prices are one of the key aspects of building energy-saving or energy self-sufficient buildings. Photovoltaic installations and heat pumps are becoming more and more common, the purpose of which is to reduce the costs of using the facility and actively participate in creating an energy self-sufficient economy. The purpose of this article is to analyze the costs of using a selected building in the case of using photovoltaics with heat pump technology and comparing them with the costs of using another form of heating. The average price values in the current year and the settlement rules applicable from January 2022 were used for the calculation. The calculation was carried out for a specific resort with an area of 620 m2.
EN
In an era of changes in the electricity market, where the share of renewable energy sources is increasing and moving away from conventional coal-based energy, the electricity used for heating is gaining importance, for example to power heat pumps. They currently are one of the most common ways for heating buildings as an alternative to fossil fuels and biomass. In this article, the authors present an analysis aimed at answering the question whether using the concept of microgrids in Polish realities provides a feasible solution. Within the framework of this article, analyses were carried out by assuming the electrification of the heating installation of users in a local microgrid located in a selected location of the Polish low-voltage distribution network. The increase in electricity demand needed to generate the corresponding amount of heat was then estimated, and subsequently the impact of this demand on the microgrid was determined. In addition, in the article, the authors estimate the production of a prosumer PV installation at the selected location and analyze the level of autoconsumption of the generated electricity in the PV installation by the heat pump.
EN
The article adresses the analysis of different methods of meeting the demand for electricity from a global perspective. The paper also addresses the impact of energy consumption on sustainable development. Opportunities and challenges associated with energy generation from different sources are also being discussed. The energy crisis is being viewed from the perspective of the challenges and opportunities for modern science and technology especially from the perspective of increasing energy efficiency and decreasing the energy intensity of the economy.
PL
Artykuł dotyczy analizy różnych sposobów zaspokojenia zapotrzebowania na energię elektryczną z perspektywy globalnej. Artykuł dotyczy również wpływu zużycia energii na zrównoważony rozwój. Dyskutowane są również możliwości i wyzwania związane z wytwarzaniem energii z różnych źródeł. Kryzys energetyczny jest rozpatrywany przez pryzmat wyzwań i szans współczesnej nauki i techniki, zwłaszcza z perspektywy wzrostu efektywności energetycznej i zmniejszenia energochłonności gospodarki.
6
Content available remote Granice wzrostu energii odnawialnej
7
Content available remote Termiczne i architektoniczne aspekty renowacji loggii w budynkach wielorodzinnych
PL
Zabudowa loggii może przynieść wiele korzyści, w tym dotyczących oszczędności energii, walorów użytkowych i bezpieczeństwa. W artykule przedstawiono wyniki monitoringu temperatury w mieszkaniach z loggiami oszklonymi przez lokatorów. Badania pozwoliły na ocenę wpływu zabudowy loggii na temperaturę w ich obszarze i zmniejszenie zużycia energii w mieszkaniach. W artykule opisano także zastosowane rozwiązania architektoniczne, wpływające na komfort użytkowania loggii i poprawę estetyki budynku.
EN
Encasing of the loggias may bring many advantages, concerning energy saving, usability, and safety. The paper presents the results of the temperature monitoring in the dwellings with the loggias glazed by the inhabitants. The research allowed to assess the influence of the loggias’ encasement on their internal temperature and energy savings in the dwellings. The article also describes architectural solutions, affecting the usability and the overall aesthetics of the buildings.
EN
Among the fundamental factors affecting the emissions of internal combustion engines is the resistance to motion acting on the car. This is an important factor to be taken into account when testing cars in conditions simulated on a chassis dynamometer. The dependence of the driving resistance function on vehicle speed is determined on the basis of various methods, the most frequently used of which is the so-called alternative method specified in procedures for the type approval of motor vehicles with respect to the emission of pollutants in exhaust gases. The values adopted in accordance with the alternative method differ from the actual resistance acting on the car in road conditions. This is one of the reasons why the emission of pollutants and the fuel consumption of an engine in real road conditions differs from the values given by the car manufacturer, including the emission limits specified in the standards. This paper presents an evaluation of the influence of driving resistance on the energy demand and emission of pollutants in the exhaust gases by sample passenger car with SI engine fuelled by petrol and LPG.
EN
Maritime and coastal areas are the lifeblood of many countries, being essential to their well-being. They provide trade routes, regulate the climate, and supply both organic and inorganic resources, along with energy, a crucial requirement for living and recreation. However, there are emerging disparities and barriers in terms of marine exploitation. On the one hand, existing and evolving technologies and knowledge allow better utilization of the sea, while on the other hand, the cumulative effect of human activity leads to conflicts of interest and to a deterioration of the marine environment. This article aims to consider the impact of changes in the world economy on the evolution of the fishing fleet, including the characteristics of vessels produced in consecutive years. We also attempt to determine the most common type of vessel presently operating in the world fleet. A number of external factors impact the organization and operation of the world’s fishing fleet, including economic, geographical, and political factors. The strength of each factor varies depending on the conditions in which the fleet operates. Also, we would also like to establish to what extent efforts aimed at energy demand reduction have affected the characteristics of the current fleet, determining the scale and direction of change, while also identifying any relevant constraints and limitations. The intention behind this paper is to discover the size and structure of the fishing fleet and whether it is changing as a result of environmental transformation. With this objective in mind, we have outlined a review of the literature and used statistical methods in order to carry out a comparative analysis of the size and structure of the world’s fishing fleet.
EN
The need for research in the field of energy efficiency and the ecological aspects of primary energy use is currently receiving considerable attention in the framework of European Union policy as well as in the Slovak Republic. It is necessary to deal with this issue not only for the needs of normal operations, but especially in the current situation, when due to the threat of the COVID-19 virus, the requirements for thermal energy are increased. A suitable way to achieve this is the use of renewable resources, in Slovakia mainly biomass, solar, wind, water and geothermal energy. Ambient air, ground heat, heat contained in groundwater and various other waste heat from technological processes represent a huge potential for the use of low-potential energy. The article is focused on solving the problem of conversion of primary energy into heat using thermodynamic cycles and compressor circulation with working substance (refrigerant) CO2.
PL
Potrzeba badań w obszarze efektywności energetycznej i ekologicznych aspektów wykorzystania energii pierwotnej skupia obecnie dużo uwagi w ramach polityki Unii Europejskiej, jak również w Republice Słowackiej. Konieczne jest zajęcie się tym problemem nie tylko dla zapewnienia normalnego funkcjonowania, ale szczególnie w obecnej sytuacji, gdy w związku z zagrożeniem wirusem COVID-19 wzrastają wymagania i zapotrzebowanie na energię cieplną. Odpowiednim sposobem na osiągnięcie tego jest wykorzystanie zasobów odnawialnych, na Słowacji głównie biomasy, energii słonecznej, wiatrowej, wodnej i geotermalnej. Powietrze atmosferyczne, ciepło ziemi, ciepło zawarte w wodach gruntowych i różne inne rodzaje ciepła odpadowego z procesów technologicznych stanowią ogromny potencjał wykorzystania energii niskotemperaturowej. W artykule skupiono się na rozwiązaniu problemu konwersji energii pierwotnej na ciepło za pomocą obiegów termodynamicznych sprężarkowych z czynnikiem roboczym (chłodniczym) CO2.
PL
Autorzy zaprezentowali w artykule innowacyjny zintegrowany system ocieplania budynku i podgrzewu powietrza wentylacyjnego. Rozwiązanie to może znaleźć zastosowanie zarówno w budownictwie mieszkaniowym, jak i przemysłowym czy w budynkach użyteczności publicznej. Zapewnia skuteczną izolację termiczną przy jednoczesnym ogrzewaniu powietrza wentylacyjnego za pomocą promieniowania słonecznego [5].
EN
The authors an innovative integrated system of building insulation and ventilation air heating are presented. This solution can be applied both in residential and industrial buildings or in public buildings. It provides effective thermal insulation with simultaneous heating of the ventilation air by using solar radiation [5].
PL
Budynki efektywne energetycznie wpisują się w tematykę wielu polityk niskoemisyjnych na najbliższe lata, a minimalizacja tzw. śladu węglowego jest kluczową strategią przy przeciwdziałaniu globalnemu ociepleniu klimatu. Niniejsza praca dotyczy zagadnienia dekarbonizacji oraz autonomiczności energetycznej współczesnych budynków użyteczności publicznej. Ocena wspomnianych zagadnień została przeprowadzona za pomocą analizy komputerowej w programie Energy Plus rzeczywistego marketu wielkopowierzchniowego. Budynek został skalibrowany z danymi rzeczywistego zużycia energii, a następnie wykonano analizę poprawy efektywności energetycznej budynku.
EN
Energy-efficient buildings are part of the subject of many low-emission policies for the coming years, and the minimization of the so-called carbon footprint is a key strategy in tackling global warming. This work deals with the issue of decarbonisation and energy autonomy of contemporary public buildings. The assessment of the above-mentioned issues was carried out by means of a computer analysis in the Energy Plus program of a real large-area supermarket. The building was calibrated with actual energy consumption data and then an analysis of the building’s energy efficiency improvement was performed.
EN
The estimation of energy consumption has become an important prerequisite for planning the implementation of electric buses and the required infrastructure for charging them in public urban transport. The article proposes a model for estimating electric bus energy consumption for the bus line of public urban transport. The developed model uses a deep learning network to estimate bus energy consumption, stop by stop, accounting for the road characteristics. The aim of the research was to develop a neural model for estimating electric energy consumptionso that it can be easily applied in large bus networks using real data sources that are widely available to bus operators. The deep learning networks allow for the effective use of a large number of sample data (big data). The energy needed to power a buswhich travels a distance from a bus stop to a bus stop is a function of selected parameters, such as distance between stops, driving time between stops, time at the bus stop, average number of passengers, the slope of the road, average speed between stops, extra energy–fixed value for the section. The given relationships were mapped using a neural network. A neural model for estimating the energy consumption of an electric bus can be used in works for determining the necessary battery capacity, for the design of optimized charging strategies and to determine charging infrastructure requirements for electric buses in a public transport network.
PL
Ocena zapotrzebowania na energię stała się ważnym warunkiem wstępnym planowania wdrażania autobusów elektrycznych oraz wymaganej infrastruktury do ich ładowania w publicznym transporcie miejskim. W artykule zaproponowano model szacowania zużycia energii przez autobus elektryczny dla linii autobusowej przedsiębiorstwa komunikacji miejskiej. W opracowanym modelu do wyznaczenia zapotrzebowania na energię autobusu na odcinku drogi od przystanku do przystanku z uwzględnieniem charakterystyki drogi lokalnej użyto sieci neuronowej typu deep learning. Celem badań było opracowanie neuronowego modelu szacowania zużycia energiielektrycznej tak, aby można go było łatwo zastosować w dużych sieciach autobusowych przy użyciu rzeczywistych źródeł danych, które są powszechnie dostępne dla operatorów transportu autobusowego. Użycie sieci typu deep learning pozwala na efektywne wykorzystanie dużej liczbydanych wzorcowych (tzw. big data). Przyjęto, że wartość energii potrzebna do pokonania odległości od przystanku do przystanku autobusowego jest funkcją wybranych parametrów, takich jak: odległość między przystankami, czas trwania jazdy na odcinku między przystankami, czas przebywania autobusu na przystanku, średnia liczba pasażerów, kąt nachylenia drogi, średnia prędkość na odcinku, energia dodatkowa –stała wartość dla odcinka. Podane zależności zostały odwzorowane za pomocą sieci neuronowej. Neuronowy model oszacowania zużycia energii przez autobus elektryczny może zostać użyty w pracach mających na celu określenie niezbędnej pojemności akumulatorów, zaprojektowanie zoptymalizowanych strategii ładowania oraz określenie wymogów w zakresie infrastruktury ładowania dla autobusów elektrycznych w sieci transportu publicznego.
EN
The paper presents the results of modelling airflow for ventilation of a single-family house with an area of 180 m2. The building was equipped with mechanical ventilation with the possibility of varying the airflow. The airflow was calculated as a function of carbon dioxide concentration. The presence of people in selected rooms was an internal source of carbon dioxide. In order to properly design of a ventilation system and then model the contamination level, ContamW software was used. The year-long cost analysis was carried out for the installation working with variable airflow (day, night). The analysis took into account the price of the electricity used by the fans of Air Handling Unit and meteorological data to estimate the power input to the heater of the Unit. Different scenarios of system operation were included as an input data in order to find a difference in energy consumption. The calculations were to answer the question of whether it is necessary to apply expensive and advanced system that enables individual control of the airflow in every room or use the simple control of the central unit to vary the airflow in the ventilation system of single-family houses. The difference in operating cost between the system that maintains 800 and 600 ppm reaches 100 % and demonstrates the need of simple demand controlled ventilation system.
EN
Global warming causes changes in the buildings' demand of energy and the comfort of their users. This requires the modification of heating systems and air conditioning systems. The article describes the conducted simulations of changing temperatures in individual zones of the exemplary building and its energy demand for the needs of ventilation, heating and air conditioning related to the forecasted changes in external temperatures. The obtained results show decreasing energy demand for heating and its increasing demand for cooling. This is particularly important for designers, both architects and constructors and installers, who will have to face changing climatic conditions in their projects.
PL
Obserwowane obecnie ocieplenie klimatu powoduje, ze zmienia się zapotrzebowanie budynków na energię oraz komfort ich użytkowników. Wiąże się to z koniecznością modyfikacji systemów instalacji cieplnych i stosowania systemów klimatyzacji. W artykule opisano przeprowadzone symulacje zmieniających się temperatur w poszczególnych strefach przykładowego budynku oraz jego zapotrzebowania na energię na potrzeby wentylacji, ogrzewania i klimatyzacji związanych z prognozowanymi zmianami temperatur zewnętrznych. Uzyskane wyniki pokazują zmniejszające się zapotrzebowanie energii na ogrzewanie oraz jej rosnące zapotrzebowanie na chłodzenie. Jest to szczególnie istotne dla projektantów, zarówno architektów i konstruktorów, jak i instalatorów, którzy będą musieli zmierzyć się w swoich projektach ze zmieniającymi się warunkami klimatycznymi.
PL
Prowadzone działania na szczeblu unijnym w zakresie kształtowania i wdrażania polityki klimatyczno-energetycznej, konsekwentnie zmierzają w kierunku dekarbonizacji gospodarek państw członkowskich. Przewidywanie skutków oraz ocena ilościowa wpływu tego rodzaju czynników na krajowy sektor paliwowo-energetyczny wymaga stosowania odpowiednich narzędzi badawczych. Niezwykle użyteczne są tym zakresie modele matematyczne systemów energetycznych, pozwalające na implementację różnych czynników oraz na uwzględnienie charakterystyki badanego systemu i jego otoczenia. Artykuł przedstawia wyniki analizy wrażliwości zapotrzebowania na paliwa (węgiel kamienny, węgiel brunatny oraz gaz ziemny) dla energetyki z wykorzystaniem modelu systemu wytwarzania energii elektrycznej w Polsce.
EN
The activities carried out at the EU level in promoting and implementing the climate and energy policy instruments are consistently moving towards the decarbonisation of the EU Member States economies. Anticipating the effects and quantifying the impact of such instruments on the domestic fuel and in the energy sector requires the use of appropriate research tools. In this regard, mathematical models of energy systems allow for the implementation of numerous factors and to take into account the characteristics of the analysed system and its surroundings. The article presents the results of the sensitivity analysis of fuel demand (hard coal, lignite and natural gas) in the power industry using a model of the electricity generation system in Poland.
EN
In literature as well as in the university debate, we can observe the increase of interest regarding converting agricultural residues into energy. Furthermore, the energy and climate policies have encouraged the development of biogas plants for energy production. One of the most significant reasons of this escalation is that this technology may be both convenient and beneficial. The produced biogas is not only supposed to cover the energy demand like heat and electricity, the resulting digestate has the prospect of a beneficial fertilizer and can thereby influence the energy management plans. This technology is widely introduced to countries, which have large income from agriculture. Not only does this reduce the use of industrial fertilizers, but also finds use for agricultural residues. One of the countries of this type is Vietnam, which is the fifth largest exporter of rice in the world. Over 55% of greenhouse gas emission in Vietnam comes from agriculture. Using innovative technologies such as biogas, may decrease this value in near future. It may also contribute to more sustainable agriculture by decreasing traditional fields burning after the harvesting period. The goal of this research paper is to estimate the possible production of biogas from rice straw to cover the energy demand of the rice mill. Four possible scenarios have been considered in this paper, the present situation and where electricity, energy or both were covered by biogas from agricultural residues. An attempt was made to answer the question whether the amount of biogas produced from agricultural residues is enough for both: electricity and energy supply, for the rice mill. If not, how much rice straw must be delivered from other sources, from which rice is not delivered to the rice mill. The base of the assumptions during the estimation of various values were statistics from FAO and other organizations, secondary sources and data from the existing rice mill in Hậu Mỹ Bắc B in Mekong delta in Vietnam.
PL
W literaturze, jak również w debacie uniwersyteckiej, obserwujemy wzrost zainteresowania przekształcaniem odpadów rolniczych w energię. Ponadto polityka energetyczna i klimatyczna zachęciły do rozwoju produkcji biogazu do celów energetycznych. Jedną z najważniejszych przyczyn tej eskalacji jest to, że technologia ta może być zarówno wygodna, jak i korzystna. Wytworzony biogaz nie tylko może pokryć zapotrzebowanie na energię, jak ciepło i elektryczność, ale otrzymany poferment ma perspektywę korzystnego nawozu, a tym samym może wpływać na plany zarządzania energią. Technologia ta jest szeroko stosowana w krajach, które mają duże dochody z rolnictwa. Nie tylko zmniejsza stosowanie nawozów przemysłowych, ale także znajduje zastosowanie w przypadku pozostałości rolniczych. Jednym z takich krajów jest Wietnam, który jest piątym największym eksporterem ryżu na świecie. Ponad 55% emisji gazów cieplarnianych w Wietnamie pochodzi z rolnictwa. Korzystanie z innowacyjnych technologii, takich jak biogaz, może zmniejszyć tę wartość w najbliższej przyszłości. Może również przyczynić się do bardziej zrównoważonego rolnictwa, poprzez zmniejszenie tradycyjnego spalania odpadów rolniczych po okresie zbiorów. Celem tego artykułu badawczego jest oszacowanie możliwej produkcji biogazu ze słomy ryżowej, aby pokryć zapotrzebowanie na energię młyna ryżowego. W niniejszym dokumencie rozważono cztery możliwe scenariusze, obecną sytuację oraz hipotetyczne tezy, w których energia elektryczna, ciepło lub obie formy energii zostały pokryte z biogazowni. Podjęto próbę odpowiedzi na pytanie, czy dla młyna ryżowego ilość biogazu wytworzonego z odpadów rolniczych jest wystarczająca zarówno dla energii elektrycznej, jak i dla ciepła. Jeśli nie, to jaka ilość słomy ryżowej musi być dostarczona z innych źrodeł, z których ryż nie jest dostarczany do młyna. Podstawą założeń przy szacowaniu różnych wartości były statystyki z FAO i innych organizacji, źródła wtórne i dane z istniejącego młyna ryżu w Hậu Mỹ Bắc B w delcie Mekongu w Wietnamie.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.