Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  emulsion liquid membrane
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The current paper focuses on assessing key parameters affecting the extraction of Chlorpyrifos as well as emulsion stability using the emulsion liquid membrane technology. Five parameters affecting the extraction have been studied: homogenizer speed, emulsification time, agitating time, surfactant concentration, and stripping phase concentration taking into consideration the emulsion breaking. Experiments proved that using the resulting optimum values will maximize both extraction and stripping efficiencies (93.8% and 94.7% respectively), while minimizing the emulsion breakage (increasing the stability of emulsion) to 0.73% with no need to employ a carrier agent. A 10 min agitating time, 3% (v/v) Span 80 as a surfactant, 12700-rpm homogenizer speed, 0.25 M HCl as an internal phase concentration, and 5 min emulsification time are chosen to be the optimum parameters’ values. A study of extraction kinetics and estimation of mass transfer coefficient was also accomplished (3.89×10-9m/s). The conclusions of this work can be extended to the removal of other types of pesticides from water.
EN
Emulsion Liquid Membrane (ELM) has garnered much attention, for its simple operation and high selectivity for the target solute. For an ELM process to be successful, emulsion stability and formulation of liquid membrane are the two main criteria. This study investigated an ELM formulation to identify a suitable green surfactant over the ordinary ones to reduce the utilization of chemicals. The stability of water-in-oil-in-water (w/o/w) was assessed in the following ways, by altering the concentrations of the egg yolk and NaOH, homogenizer speed, and emulsification time. To ascertain the favorable conditions for phenol extraction, several experiments were performed, adopting the batch process, which included many parameters, like the influence exerted by the pH of the external feed, concentration of surfactant, concentration of the internal phase, time of emulsification, homogenization speed and mixing time. Lower breakage and greater extraction efficiency (0.83% and 82.06%, respectively) were attained at 3.5 pH of the external feed, 4% (v/v) of the surfactant, 0.1 M of NaOH, 7 min of emulsification time, 5800 rpm of homogenizer speed and 3 minutes of mixing time. From the results of this study, egg yolk emerged as a good green surfactant. Thus, the ELM process holds promise as an effective technology for stripping phenol from aqueous solutions.
EN
Emulsion liquid membrane technique (ELM) was used for the extraction of phenol from synthetic and industrial effluents. In this study, the liquid membrane used for phenol removal was composed of kerosene as the solvent, Span-80 as the surfactant and Sodium hydroxide as an internal reagent. Statistical experimental design was applied for the optimization of process parameters for the removal of phenol by ELM. The effects of process parameters namely, Surfactant concentration, membrane or organic to internal phase ratio (M/I) and emulsion to an external phase ratio (E/E) on the removal of phenol were optimized using a response surface method. The optimum conditions for the extraction of phenol using Response surface methodology were: surfactant concentration - 4.1802%, M/I ratio: 0.9987(v/v), and E/E ratio: 0.4718 (v/v). Under the optimized condition the maximum phenol extraction was found to be 98.88% respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.