Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  emotional speech
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
An analysis of low-level feature space for emotion recognition from the speech is presented. The main goal was to determine how the statistical properties computed from contours of low-level features influence the emotion recognition from speech signals. We have conducted several experiments to reduce and tune our initial feature set and to configure the classification stage. In the process of analysis of the audio feature space, we have employed the univariate feature selection using the chi-squared test. Then, in the first stage of classification, a default set of parameters was selected for every classifier. For the classifier that obtained the best results with the default settings, the hyperparameter tuning using cross-validation was exploited. In the result, we compared the classification results for two different languages to find out the difference between emotional states expressed in spoken sentences. The results show that from an initial feature set containing 3198 attributes we have obtained the dimensionality reduction about 80% using feature selection algorithm. The most dominant attributes selected at this stage based on the mel and bark frequency scales filterbanks with its variability described mainly by variance, median absolute deviation and standard and average deviations. Finally, the classification accuracy using tuned SVM classifier was equal to 72.5% and 88.27% for emotional spoken sentences in Polish and German languages, respectively.
EN
The article presents the issue of emotion recognition based on polish emotional speech analysis. The Polish database of emotional speech, prepared and shared by the Medical Electronics Division of the Lodz University of Technology, has been used for research. The following parameters extracted from sampled and normalised speech signal has been used for the analysis: energy of signal, speaker’s sex, average value of speech signal and both the minimum and maximum sample value for a given signal. As an emotional state a classifier fof our layers of artificial neural network has been used. The achieved results reach 50% of accuracy. Conducted researches focused on six emotional states: a neutral state, sadness, joy, anger, fear and boredom.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.