Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  emergency response preparedness
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: This study introduces the Optimising Level Adaptation (OLA) algorithm, designed to enhance scenario simulations for professional VR training by dynamically adjusting difficulty levels to match user performance, thereby supporting personalised learning and readiness for high-stakes situations such as firefighting and emergency response. Project and methods: The OLA algorithm divides scenario activities into blocks and adjusts their difficulty based on user performance in comparison to a reference group of AI-controlled agents. The algorithm’s efficacy was tested across three proprietary VR simulators covering diverse professional scenarios: public speaking, hydrogen electrolysis and mechanical technician operations. Each scenario was divided into ten blocks of varying difficulty (easy, medium, difficult), dynamically adjusted based on the user's performance. This structure enables rapid adaptation, making it particularly beneficial for fire and rescue training, where realistic, yet scalable, scenario complexity is critical to preparing for unpredictable conditions in the field. Results: Testing with 30 participants per simulator revealed an average final score of approximately 75%, closely aligning with the target success rate of 70%. The average number of difficulty level switches (between 0.8 and 1.16 across scenarios) demonstrated the algorithm’s effective adaptation to user performance, thus ensuring optimal engagement. The OLA algorithm’s capacity to tailor training difficulty in real time reflects its potential to enhance skill retention and readiness in emergency response settings, where maintaining user engagement at appropriate challenge levels is essential for preparedness in life-threatening situations. Conclusions: The OLA algorithm provides significant advancements in personalised VR training, particularly within fire- and rescue-related applications, by maintaining optimal engagement and adaptive challenge levels. The adaptability demonstrated across multiple scenarios indicates its versatility and potential for use in diverse high-risk training applications. Future research could enhance the OLA algorithm’s effectiveness by refining scenario block determination, therefore contributing to improved response times, decision-making and operational efficiency in the emergency services.
PL
Cel: W niniejszym badaniu przedstawiono algorytm Optimizing Level Adaptation (OLA), który ma na celu ulepszenie symulacji scenariuszy na potrzeby profesjonalnych szkoleń VR poprzez dynamiczne dostosowywanie poziomów trudności do wydajności użytkownika, wspierając w ten sposób spersonalizowane nauczanie i gotowość do radzenia sobie w sytuacjach wysokiego ryzyka, takich jak gaszenie pożarów i reagowanie na sytuacje awaryjne. Projekt i metody: Algorytm OLA dzieli działania scenariusza na bloki i dostosowuje ich trudność na podstawie wyników użytkownika w porównaniu do grupy referencyjnej agentów kontrolowanych przez AI. Skuteczność algorytmu została przetestowana w trzech zastrzeżonych symulatorach VR obejmujących różne scenariusze zawodowe: wystąpienia publiczne, elektrolizę wodoru i operacje technika mechanicznego. Każdy scenariusz został podzielony na dziesięć bloków o różnym stopniu trudności (łatwy, średni, trudny), dynamicznie dostosowywanych na podstawie wyników użytkownika.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.