Connectors are crucial for steel–concrete composite girder to insure cooperative work of the two different materials. Flanges in connectors can be used as supports and templates to accelerate construction progress. Embedded connector is a type of connector formed by embedded web with opening holes for arranging reinforcements. However, traditional embedded connector does not include flanges. In this paper, an embedded connector with flanges was proposed. Three full-scale specimens were fabricated and push-out tests were conducted to investigate the shear behavior of the innovative connector. The failure mode and shear performance of the traditional embedded shear connector without flanges and the innovative connector with flanges were compared. Three-dimensional finite-element model (FEM) was developed and validated based on the test results. Furthermore, parametric analysis was conducted to further study the effects of the strength of the concrete, diameter of the hole, diameter of the perforating rebar, embedding depth, and height of the corrugated web on the shear performance of the innovative connector. The results of the parametric study were analyzed to evaluate the shear capacity for the embedded connector with flanges. Finally, an analytical model was proposed to predict the shear strength of the innovative embedded connector, which will provide important guidance for engineering application.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.