Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 49

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  elektrokardiogram
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
EN
The electrocardiogram (ECG) is a common test that measures the electrical activity of the heart. On the ECG, several cardiac abnormalities can be seen, including arrhythmias, which are one of the major causes of cardiac mortality worldwide. The objective for the research community is accurate and automated cardiovascular analysis, especially given the maturity of artificial intelligence technology and its contribution to the health area. The goal of this effort is to create an acquisition system and use artificial intelligence to classify ECG readings. This system is designed in two parts: the first is the signal acquisition using the ECG Module AD8232; the obtained signal is a single derivation that has been amplified and filtered. The second section is the classification for heart illness identification; the suggested model is a deep convolutional neural network with 12 layers that was able to categorize five types of heartbeats from the MIT-BIH arrhythmia database. The results were encouraging, and the embedded system was built.
PL
Elektrokardiogram (EKG) to powszechny test, który mierzy aktywność elektryczną serca. W zapisie EKG można zauważyć kilka nieprawidłowości serca, w tym arytmie, które są jedną z głównych przyczyn śmiertelności sercowej na całym świecie. Celem społeczności naukowej jest dokładna i zautomatyzowana analiza układu sercowo-naczyniowego, zwłaszcza biorąc pod uwagę dojrzałość technologii sztucznej inteligencji i jej wkład w obszar zdrowia. Celem tych wysiłków jest stworzenie systemu akwizycji i wykorzystanie sztucznej inteligencji do klasyfikacji odczytów EKG. System ten składa się z dwóch części: pierwsza to akwizycja sygnału za pomocą modułu EKG AD8232; uzyskany sygnał jest pojedynczą pochodną, która została wzmocniona i przefiltrowana. Druga sekcja to klasyfikacja identyfikacji chorób serca; sugerowany model to głęboka konwolucyjna sieć neuronowa z 12 warstwami, która była w stanie sklasyfikować pięć typów uderzeń serca z bazy danych arytmii MIT-BIH. Wyniki były zachęcające i zbudowano system wbudowany.
EN
In order to diagnose a range of cardiac conditions, it is important to conduct an accurate evaluation of eitherphonocardiogram (PCG)and electrocardiogram (ECG) data. Artificial intelligence and machine learning-based computer-assisted diagnostics are becoming increasingly commonplace in modern medicine, assisting clinicians in making life-or-death decisions. The requirement for an enormous amount of informationfor training to establish the framework for a deeplearning-based technique is an empirical challenge in the field of medicine. This increases the riskof personal information being misused. As a direct result of this issue, there has been an explosion in the study of methods for creating synthetic patient data. Researchers have attempted to generate synthetic ECG or PCG readings. To balance the dataset, ECG data were first created on the MIT-BIH arrhythmia database using LS GAN and Cycle GAN. Next, using VGGNet, studies were conducted to classify arrhythmias for the synthesized ECG signals. The synthesized signals performed well and resembled the original signal and the obtained precision of 91.20%, recall of 89.52% and an F1 scoreof 90.35%.
PL
W celu zdiagnozowania szeregu chorób serca, istotne jest przeprowadzenie dokładnej oceny danych z fonokardiogramu (PCG)i elektrokardiogram (EKG). Sztuczna inteligencja i diagnostyka wspomagana komputerowo, oparta na uczeniu maszynowym stają sięcoraz bardziej powszechne we współczesnej medycynie, pomagając klinicystom w podejmowaniu krytycznych decyzji. Z kolei, Wymóg ogromnej ilości informacjido trenowania, w celu ustalenia platformy (ang. framework) techniki, opartej na głębokim uczeniu stanowi empiryczne wyzwanie w obszarze medycyny. Zwiększa to ryzyko niewłaściwego wykorzystania danych osobowych. Bezpośrednim skutkiem tego problemu był gwałtowny rozwój badań nad metodami tworzenia syntetycznych danych pacjentów. Badacze podjęli próbę wygenerowania syntetycznych odczytów diagramów EKG lub PCG. Stąd, w celu zrównoważenia zbioru danych, w pierwszej kolejności utworzono dane EKG w bazie danych arytmii MIT-BIH przy użyciu struktur sieci generatywnych LSGAN i CycleGAN. Następnie, wykorzystując strukturę sieci VGGNet, przeprowadzono badania, mające na celu klasyfikację arytmii na potrzeby syntetyzowanych sygnałów EKG. Dla wygenerowanych sygnałów, przypominających sygnał oryginalny uzyskano dobre rezultaty. Należy podkreślić,że uzyskana dokładność wynosiła 91,20%, powtarzalność 89,52% i wynik F1 –odpowiednio 90,35%.
EN
In order to achieve the accurate identifications of various electroencephalograms (EEGs) and electrocardiograms (ECGs), a unified framework of wavelet scattering transform (WST), bidirectional weighted two-directional two-dimensional principal component analysis (BW(2D)2PCA) and grey wolf optimization based kernel extreme learning machine (KELM) was put forward in this study. To extract more discriminating features in the WST domain, the BW(2D)2PCA was proposed based on original two-directional two-dimensional principal component analysis, by considering both the contribution of eigenvalue and the variation of two adjacent eigenvalues. Totally fifteen classification tasks of classifying normal vs interictal vs ictal EEGs, non-seizure vs seizure EEGs and normal vs congestive heart failure (CHF) ECGs were investigated. Applying patient non-specific strategy, the proposed scheme reported ACCs of no less than 99.300 ± 0.121 % for all the thirteen classification cases of Bonn dataset in classifying normal vs interictal vs ictal EEGs, MCC of 90.947 ± 0.128 % in distinguishing non-seizure vs seizure EEGs of CHB-MIT dataset, and MCC of 99.994 ± 0.001 % in identifying normal vs CHF ECGs of BBIH dataset. Experimental results indicate BW(2D)2PCA based framework outperforms (2D)2PCA based scheme, the high-performance results manifest the effectiveness of the proposed framework and our proposal is superior to most existing approaches.
4
Content available remote A deformable CNN architecture for predicting clinical acceptability of ECG signal
EN
The degraded quality of the electrocardiogram (ECG) signals is the main source of false alarms in critical care units. Therefore, a preliminary analysis of the ECG signal is required to decide its clinical acceptability. In conventional techniques, different handcrafted features are extracted from the ECG signal based on signal quality indices (SQIs) to predict clinical acceptability. A one-dimensional deformable convolutional neural network (1DDCNN) is proposed in this work to extract features automatically, without manual interference, to detect the clinical acceptability of ECG signals efficiently. In order to create DCNN, the deformable convolution and pooling layers are merged into the regular convolutional neural network (CNN) architecture. In DCNN, the equidistant sampling locations of a regular CNN are replaced with adaptive sampling locations, which improves the network’s ability to learn based on the input. Deformable convolution layers concentrate more on significant segments of the ECG signals rather than giving equal attention to all segments. The proposed method is able to detect acceptable and unacceptable ECG signals with an accuracy of 99.50%, recall of 99.78%, specificity of 99.60%, precision of 99.47%, and F-score of 0.999. Experimental results show that the proposed method performs better than earlier state-of-the-art techniques.
EN
This paper presents a new customized hybrid approach for early detection of cardiac abnormalities using an electrocardiogram (ECG). The ECG is a bio-electrical signal that helps monitor the heart’s electrical activity. It can provide health information about the normal and abnormal physiology of the heart. Early diagnosis of cardiac abnormalities is critical for cardiac patients to avoid stroke or sudden cardiac death. The main aim of this paper is to detect crucial beats that can damage the functioning of the heart. Initially, a modified Pan–Tompkins algorithm identifies the characteristic points, followed by heartbeat segmentation. Subsequently, a different hybrid deep convolutional neural network (CNN) is proposed to experiment on standard and real-time long-term ECG databases. This work successfully classifies several cardiac beat abnormalities such as supra-ventricular ectopic beats (SVE), ventricular beats (VE), intra-ventricular conduction disturbances beats (IVCD), and normal beats (N). The obtained classification results show a better accuracy of 99.28% with an F1 score of 99.24% with the MIT–BIH database and a descent accuracy of 99.12% with the real-time acquired database.
EN
In humans, Congestive Heart Failure (CHF) refers to the chronic progressive condition that drastically influences the pumping potentiality of the heart muscle. This CHF has the possibility of increasing health expenditure, morbidity, mortality and minimized quality of life. In this context, Electrocardiogram (ECG) is considered as the simplest and a non-invasive diagnosis method that aids in detecting and demonstrating the realizable changes in CHF. However, diagnosing CHF based on manual exploration of ECG signals is frequently impacted by errors as duration and small amplitude of the signals either investigated separately or in the integration is determined to neither specific nor sensitive. At this juncture, the reliability and diagnostic objectivity of ECG signals during the CHF detection process may be enhanced through the inclusion of automated computer-aided system. In this paper, Deep CNN and LSTM Architecture (DCNN-LSTM)-based automated diagnosis system is proposed for detecting CHF using ECG signals. In specific, CNN is included for the purpose of extracting deep features and LSTM is used for attaining the objective of CHF detection using the extracted features. This proposed DCNN-LSTM is evolved with minimal pre-processing of ECG signals and does not involve any classification process or manual engineered features during diagnosis. The experimentation of the proposed DCNN-LSTM conducted using the real time ECG signals datasets confirmed an accuracy of 99.52, sensitivity of 99.31%, specificity of 99.28%, F-Score of 98.94% and AUC of 99.9%, respectively.
7
EN
Improving the classification accuracy of electrocardiogram (ECG) signals is of great significance for diagnosing heart abnormalities and arrhythmias and preventing cardiovascular diseases (CVDs). The traditional classification method depends on medical experience to select and extract features artificially, lacks the generalization ability to deal with big medical data. The vital feature extraction ability of neural networks has become a hot topic to solve this problem. Based on this, the capsule network is applied to ECG signal classification in this paper. Based on the original network architecture, long short-term memory (LSTM) network and 1D convolutional neural network (CNN) are added as a parallel feature extraction layer to extract the spatial and temporal features of the ECG signal. In addition, the enhanced routing algorithm is proposed, which uses the prior probability of subcapsules as a weighting factor for routing algorithm classification to weaken the influence of noise capsules. The proposed model is superior to the existing state-of-the-art techniques when tested on the MIT-BIH arrhythmia database.
EN
Biometric authentication technology has become increasingly common in our daily lives as information protection and control regulation requirements have grown worldwide. A biometric system must be simple, flexible, efficient, and secure from unauthorized access. The most suitable and flexible biometric traits are the face, fingerprint, palm print, voice, electrocardiogram (ECG), and iris. ECGs are difficult to falsify among these biometric traits and are less attack-prone. However, designing biometric systems based on ECG is very challenging. The major limitations of the existing techniques are that they require a large amount of training data and that they are trained and tested on an on-person database. To cope with these issues, this work proposes a novel biometric authentication scheme based on ECG detection called BAED. The system was developed based on deep learning algorithms, including a convolutional neural network (CNN) and a long-term memory (LSTM) network with a customized activation function. The authors evaluated the proposed model with on-and off-person databases including ECG-ID, Physikalisch-Technische Bundesanstalt (PTB), Check Your Bio-signals Here Initiative (CYBHi), and the University of Toronto Database (UofTDB). In addition to the standard performance parameters, certain key supportive identification parameters such as FMR, FNMR, FAR, and FRR were computed and compared to increase the model’s credibility.The proposed BAED system outperforms prior state-of-the-art approaches.
9
EN
Cardiovascular diseases (CVDs) are a group of heart and blood vessel ailments that can cause chest pain and trouble breathing, especially while active. However, some patients with heart disease have no symptoms and may benefit from screening. Electrocardiogram (ECG) measures electrical activity of the heart using sensors positioned on the skin over the chest, and it can be used for the timely detection of CVDs. This work presents a technique for classification among lethal CVDs like atrial fibrillation (Afib), ventricular fibrillation (Vfib), ventricular tachycardia (Vtec), and normal (N) beats. A novel combination of Stationary wavelet transforms (SWT) and a two-stage median filter with Savitzky–Golay (SG) filter were utilised for pre-processing of the ECG signal followed by segmentation and z-score normalisation process. Next, 1-D six-layers convolutional neural network (1- D CNN) was used for automated and reliable feature extraction. After that, bidirectional long short-term memory (Bi-LSTM) was used in the back end for classification of arrhythmias. The novelty of the present work is the use of 1-D CNN and Bi-LSTM architecture followed by relevant and effective pre-processing of the ECG signal makes this technique accurate and reliable. An accuracy of 99.41 % was achieved using 10-fold cross validation, which is superior to the existing state-of-art methods. Thus, this method presents a noble, accurate, and reliable method for classification of cardiac arrhythmia beats.
EN
Health problems, directly or indirectly caused by cardiac arrhythmias, may threaten life. The analysis of electrocardiogram (ECG) signals is an important diagnostic tool for assessing cardiac function in clinical research and disease diagnosis. Until today various Soft Computing methods and techniques have been proposed for the analysis of ECG signals. In this study, a new Ensemble Learning based method is proposed that automatically classifies the arrhythmic heartbeats of ECG signal according to the category-based and patient-based evaluation plan. A two-stage median filter was used to remove the baseline wander from the ECG signal. The locations of fiducial points of the ECG signal were determined using the developed QRS complex detection method. Within the scope of this study, four different feature extraction methods were utilized. A new feature extraction technique based on the Power Spectral Density has been proposed. Hybrid sub-feature sets were constructed using a Wrapper-based feature selection algorithm. A new method based on Ensemble Learning (EL) has been proposed by using a stacking algorithm. Multi-layer Perceptron (MLP) and Random Forest (RF) as base learners and Linear Regression (LR) as meta learner were utilized. Average performance values for the category-based arrhythmic heartbeat classification of the proposed new method based on Ensemble Learning; accuracy was 99,88%, sensitivity was 99,08%, specificity was 99,94% and positive predictivity (+P) was 99,08%. Average performance values for patient-based arrhythmic heartbeat classification were 99,72% accuracy, 99,30% sensitivity, 99,83% specificity and 99,30% positive predictivity (+P). Thus, it is concluded that the proposed method has higher performance results than similar studies in the literature.
11
Content available remote An improved cardiac arrhythmia classification using an RR interval-based approach
EN
Accurate and early detection of cardiac arrhythmia present in an electrocardiogram (ECG) can prevent many premature deaths. Cardiac arrhythmia arises due to the improper conduction of electrical impulses throughout the heart. In this paper, we propose an improved RR interval-based cardiac arrhythmia classification approach. The Discrete Wavelet Transform (DWT) and median filters were used to remove high-frequency noise and baseline wander from the raw ECG. Next, the processed ECG was segmented after the determination of the QRS region. We extracted the primary feature RR interval and other statistical features from the beats to classify the Normal, Premature Ventricular Contraction (PVC), and Premature Atrial Contraction (PAC). The K-Nearest Neighbour (k-NN), Support Vector Machine (SVM), Decision Tree (DT), Naı¨ve Bayes (NB), and Random Forest (RF) classifier were utilised for classification. Overall performance of SVM with Gaussian kernel achieved Se % = 99.28, Sp % = 99.63, +P % = 99.28, and Acc % = 99.51, which is better than the other classifiers used in this method. The obtained results of the proposed method are significantly better and more accurate.
EN
Atrial fibrillation (AF) is a major cardiovascular disease that has affected thousands of individuals worldwide. The electrocardiogram (ECG) is the most extensively applied approach to detect AF at present, while the traditional detection strategy based on the visual observation of ECG data is often laborious and inefficient. In this work, we specially designed an intelligent recognition system based on a novel convolutional neural network that utilizes the multi-scale convolution kernel and bidirectional gated recurrent unit with attention mechanism for AF detection. Also, two standard control groups using 10-fold cross-validation were performed to assess the validity of the proposed model. The empirical results not only demonstrate the high efficiency of multi-scale convolution kernel, but also show that the model has a more superior classification performance to several state-of the-art methods with an accuracy of 98.3% and 97.7% on two public databases, respectively. Due to its high performance, we plan to develop the model into portable devices to benefit more individuals such as the elderly and athletes.
13
Content available remote Spectral entropy and deep convolutional neural network for ECG beat classification
EN
Sudden cardiac death is the result of abnormal heart conditions. Therefore, early detection of such abnormal conditions is vital to identify heart problems. Hence, in this paper, we aim to present a new computer-aided diagnosis (CAD) method based on time-frequency analysis of electrocardiogram (ECG) signals and deep neural networks for arrhythmia detection. Time-frequency transforms have the capability of providing spectral information at different times, which is very useful for analyzing non-stationary signals. On the other side, entropy is an attractive measurement from ECG signals which can distinguish different types of them. In this paper, time-frequency spectral entropy is proposed to extract the efficient features from ECG signals. All computed entropies cannot provide separability among different classes, two-directional two-dimensional principal component analysis (2D2PCA) can be used to reduce the dimension of the extracted features. Finally, the convolutional neural network (CNN) classifies the time-frequency features to diagnose the ECG beat signals and detect arrhythmias. The results show that the spectral entropy can provide good separation between different among ECG beats and the proposed method outperforms the recently introduced method for analyzing ECG signals.
EN
Electrocardiogram (ECG) is a non-invasive technique used to detect various cardiac disorders. One of the major causes of cardiac arrest is an arrhythmia. Furthermore, ECG beat classification is essential to detect life-threatening cardiac arrhythmias. The major limitations of the traditional ECG beat classification systems are the requirement of an extensive training dataset to train the model and inconsistent performance for the detection of ventricular and supraventricular ectopic (V and S) beats. To overcome these limitations, a system denoted as SpEC is proposed in this work based on Stockwell transform (ST) and two-dimensional residual network (2D-ResNet) for improvement of ECG beat classification technique with a limited amount of training data. ST, which is used to represent the ECG signal into a time-frequency domain, provides frequency invariant amplitude response and dynamic resolution. The resultant ST images are applied as input to the proposed 2D-ResNet to classify five different types of ECG beats in a patient-specific way as recommended by the Association for the Advancement of Medical Instrumentation (AAMI). The proposed SpEC system achieved an overall accuracy (Acc) of 99.73%, sensitivity (Sen) = 98.84%, Specificity (Spe) = 99.50%, Positive predictivity (Ppr) = 98.20% on MIT-BIH arrhythmia database, and shows an overall Acc of 89.87% on real-time acquired ECG dataset with classification time of single ECG beat image = 0.2365 (s) in detecting of five arrhythmia classes. The proposed method shows better performance on both the database compared to the earlier reported state-of-art techniques.
EN
Diabetes mellitus (DM) is a multifactorial disease characterized by hyperglycemia. The type 1 and type 2 DM are two different conditions with insulin deficiency and insulin resistance, respectively. It may cause atherosclerosis, stroke, myocardial infarction and other relevant complications. It also features neurological degeneration with autonomic dysfunction to meet metabolic demand. The autonomic balance controls the physiological variables that exhibit nonlinear dynamics. Thus, in current work, nonlinear heart rate variability (HRV) parameters in prognosis of diabetes using artificial neural network (ANN) and support vector machine (SVM) have been demonstrated. The digital lead-I electrocardiogram (ECG) was recorded from male Wister rats of 10–12 week of age and 200 ± 20 gm of weight from control (n = 5) as well as from Streptozotocin induced diabetic rats (n = 5). A total of 526 datasets were computed from the recorded ECG data for evaluating thirteen nonlinear HRV parameters and used for training and testing of ANN. Using these parameters as inputs, the classification accuracy of 86.3% was obtained with an ANN architecture (13:7:1) at learning rate of 0.01. While relatively better accuracy of 90.5% was observed with SVM to differentiate the diabetic and control subjects. The obtained results suggested that nonlinear HRV parameters show distinct changes due to diabetes and hence along with machine learning tools, these can be used for development of noninvasive low-cost real-time prognostic system in predicting diabetes using machine learning techniques.
EN
Myocardial infarction (MI), usually referred as heart attack, takes place when blood circulation stops to specific portion of the heart resulting permanent damage to the heart muscles. It is an important task to identify the occurrence of MI from the ECG recordings efficiently. Most of the detection procedures include advanced signal processing methods, more ECG features and composite classifiers, making the overall procedure complex. This paper aims at automated identification of MI using modified Stockwell transform (MST) based time-frequency analysis and a phase information distribution pattern method. The morphologi-cal, pathological and temporal alterations in ECG waveforms resulting from the onset of MI are noticed in the phase distribution pattern of the ECG signal. Two discriminating features, utterly reflecting these alterations, are recognized for 12 leads of the MI affected ECG signal. Prior informations regarding the pathological characteristics of the specific disease are required for the correct detection of MI using few numbers of ECG leads. Thus, in this paper 12 lead ECG signals have been considered for identification of MI. The two-class classification problem with MI class and healthy individual class is performed using the threshold based classification regulation. Both healthy control and MI affected ECG signals are collected from the PTB diagnostic ECG database. The accuracy, sensitivity and specificity are found to be 99.93%, 99.97% and 99.30% for detection of MI. The proposed method has got the superiority in terms of simplicity of features, small feature dimension and simpler classification rule ensuring faster, accurate and easier MI detection.
PL
W artykule zaproponowano zintegrowane środowisko graficzne do zestawiania metod przetwarzania sygnału EKG celem separacji załamków R. Współczesne systemy automatyzacji i informatyzacji pola walki zaczynają dotyczyć nie tylko środków bojowych ale również załóg i obsług wysoce specjalistycznego oprzyrządowania. W artykule opisano efektywność algorytmów przetwarzania sygnału EKG, na potrzeby elektronicznych urządzeń medycznych i biomedycznych, w których zaawansowane sensory i algorytmy mają nieprzerwanie monitorować wydolność i gotowość do prowadzenia działań bojowych przez żołnierzy. Autor opisuje efektywności dobieranych doświadczalnie algorytmów oraz ograniczenia i wyzwania w procesowaniu sygnałów EKG, w odniesieniu do stosowanych metod.
EN
The article proposes an integrated graphical environment for the compilation of ECG signal processing methods for the separation of R-waves. Modern automation systems and computerization of the battlefield begin to deal not only with combat assets but also crews and the handling of highly specialized instrumentation. The article describes the efficiency of the ECG signal processing algorithms, for the needs of electronic medical and biomedical devices, in which advanced sensors and algorithms are to continually monitor the efficiency and readiness to conduct combat operations by soldiers. The author describes the effectiveness of experimentally selected algorithms as well as limitations and challenges in ECG signal processing in relation to applied methods.
EN
We investigate the variability of one of the most often used complexity measures in the analysis of the time series of RR intervals, i.e. Sample Entropy. The analysis is carried out for a dense matrix of possible r thresholds in 79 24h recordings, for segments consisting of 5000 consecutive beats, randomly selected from the whole recording. It is repeated for the same recordings in random order. This study is made possible by the novel NCM algorithm which is many orders of magnitude faster than the alternative approaches. We find that the bootstrapped standard errors for Sample entropy are large for RR intervals in physiological order compared to the standard errors for shuffled data which correspond to the maximum available entropy. This result indicates that Sample Entropy varies widely over the circadian period. This paper is purely methodological and no physiological interpretations are attempted.
EN
Coronary artery disease (CAD) develops when coronary arteries are unable to supply oxygen-rich blood to the heart due to the accumulation of cholesterol plaque on the inner walls of the arteries. Chronic insufficient blood flow leads to the complications, including angina and heart failure. In addition, acute plaque rupture may lead to vessel occlusion, causing a heart attack. Thus, it is encouraged to have regular check-ups to diagnose CAD early and avert complications. The electrocardiogram (ECG) is a widely used diagnostic tool to study the electrical activity of the heart. However, ECG signals are highly chaotic, complex, and non-stationary in their behaviour. It is laborious, and requires expertise, to visually interpret these signals. Hence, the computer-aided detection system (CADS) is developed to assist clinicians to interpret the ECG signals fast and reliably. In this work, we have employed sixteen entropies to extract the various hidden signatures from ECG signals of normal healthy persons as well as patients with CAD. We observed that the majority of extracted entropy features showed lower values for CAD patients compared to normal subjects. We believe that there is one possible reason which could be the decreased in the variability of ECG signals is associated with reduced heart pump function.
EN
In this paper, an algorithm is proposed for efficient compression of bio-signals based on discrete Tchebichef moments and Artificial Bee Colony (ABC). The Tchebichef moments are used to extract features of the bio-signals, then, the ABC algorithm is used to select of the optimum features which achieve the best bio-signal quality for a specific compression ratio (CR). The proposed algorithm has been tested by using different datasets of Electrocardio-gram (ECG), Electroencephalogram (EEG), and Electromyogram (EMG). The optimum feature selection using ABC significantly improve the quality of the reconstructed bio-signals. Different numerical experiments are performed to compress different records of ECG, EEG and EMG bio-signals by using the proposed algorithm and the most recent existing methods. The performance of the proposed algorithm and the other existing methods are evaluated using different metrics such as CR, PRD, and peak signal to noise ratio (PSNR). The comparison has shown that, at the same CR, the proposed compression algorithm yields the best quality of the reconstructed signals over the other existing methods.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.