Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electrostatic potential
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Molecular models derived from results of quantum-chemical calculations present an important category of didactic instruments in chemistry education in upper secondary school and, particularly, at university. These models can be used especially as tools for supporting the students’ understanding by visual learning, which can adequately address complexity of many chemical topics, incorporate appropriate didactic principles, as well as utilize the benefits brought up by the actual information technology. The proposed molecular models are non-trivial examples of didactic application of computational chemistry techniques in illustration of electron interactions in amidic group, namely the interaction of the free electron pair on the nitrogen atom with the carbonyl group and also the interaction of atoms in the amide group with other surrounding atoms in the molecule. By these molecular models it is possible to explain acid-base properties of amides applying knowledge of electron density distribution in the molecules and the resulting electrostatic potential. Presentation of the structure and properties of the amides within education is important also for the reason that amidic functions are involved in many important natural substances (e.g. proteins, peptides, nucleic acids or alkaloids), synthetic macromolecular substances (e.g. Silon) or pharmaceutical preparations (e.g. paracetamol). Molecular models then serve to support better understanding of the structure of these substances and, in relation to it, their properties.
EN
The triel bonds are analyzed and compared with the hydrogen bond interaction. The triel bonds belong to the class of interactions that are named as the σ-hole and π-hole bonds. The σ-hole bond is an interaction between the σ-hole characterized by the positive electrostatic potential and the electron rich regions such as lone electron pairs, π-electron systems, in other words, centers paying a role of Lewis bases. The σ-holes may be observed for elements of the 14–18 groups of the periodic system and the corresponding interactions with Lewis bases are named; tetrel, pnicogen, chalcogen, halogen and aerogen bonds, respectively. On the other hand, π-holes also characterized by the positive electrostatic potential are observed for centers in planar molecules or planar fragments of molecules in regions above those planes. π-holes may be attributed to triel centers (13th group of the periodic system). The boron and aluminium trihydrides and trihalides are examples of molecules where triels are characterized by π-holes. The mechanism of the triel bond formation is very similar to the mechanism of the formation of the hydrogen bond. It is the Lewis acid – Lewis base interaction where the electron charge transfer from the base unit to the acid one is observed. Next there is outflow of the electron charge from the triel center to the other parts of the Lewis acid unit; in other words the positive charge of the triel center increases as a result of complexation. The triel bonds are often very strong and often they possess characteristics of typical covalent bonds; this is confirmed by the QTAIM (Quantum Theory of Atoms in Molecules) and NBO (Natural Bond Orbital) approaches. For example, for the triel bonds the bond paths between the triel center and the Lewis base center are observed with the bond critical points (BCPs) attributed to those paths. Similarly for the A-H…B hydrogen bonds the H…B bond paths are observed. The parameters of those BCPs often indicate the covalent character of the triel bonds and analogously those characteristics for H-bonds may also indicate the covalent character of the latter interactions. It is very interesting that the triel bonds are observed experimentally in the real systems; for example in crystal structures. The triel center which is trivalent and possesses the trigonal configuration is hypovalent; it means that the octet rule is not obeyed here because of the valence electrons´ deficiency (the triel center possesses six valence electrons in such species). Thus it may interact with one Lewis base ligand reaching rather stable octet and tetrahedral configuration. If the trivalent triel center interacts with two Lewis base ligands thus it may lead to the configuration of the trigonal bipyramid with the hypervalent and pentavalent triel center. These kinds of the triel species occur in crystal structures that are described here.
EN
The structural isomers of nitroborazines were optimized at M062X/6-311++G** level of theory. The effects of the NO2 group on the molecular volume, molecular surface area, crystal density, positive, negative and total average potentials, variances, average deviation and electrostatic balance parameter on the molecular surface were considered. In addition, some important thermodynamic properties of these compounds, such as gas phase and condensed phase enthalpies of formation (ΔfH° (g) and ΔfH° (c)), and the enthalpy of sublimation (ΔH° sub), were calculated. It was found that the crystal densities (ρ) are in the range 1.4471.902 g/cm3. These values are slightly smaller than the corresponding values of their carbon analogues (except for the mononitro compounds). Meanwhile, the values of ρ for B-substituted, di- and trinitroborazines are larger than the related N-substituted compounds. The calculated values of ΔH° sub are in the range 20.1-30.4 kcal/mol. The calculated values of ΔfH° (g) and ΔfH° (c) for the B-substituted nitroborazines are more negative than those for the N-substituted ones. The stability sequence of the hydrogen bonded network structures of nitroborazines in the condensed phase is: dinitroborazine > mononitroborazine > trinitroborazine. The detonation pressure and velocity of these compounds were also calculated. Nitroborazines can be introduced as energetic compounds with high thermodynamic stability and relatively low detonation performance.
EN
The ab initio crystal density, bond topological and explosive properties of the energetic molecule 2-methyl-5-nitraminotetrazole (MNAT) have been calculated by the MOLPAK/PMIN software and the AIM theory. The density predicted from the crystal structure simulation almost matches the experimental density. The geometrical parameters of the molecule lifted from the crystal structure are in very close agreement with the reported X-ray molecular structure. The bond topological analysis predicts a signifcantly low bond electron density, as well as a less Laplacian of electron density, for the N–NO2 bond. The Laplacian for the bond to the attached methyl group, the C(2)–N(2) bond, is also found to be less negative; the less negative values of the Laplacian confrms that these are the weakest bonds in the molecule. The impact sensitivity (h50) of the molecule has been calculated, and is almost equal to the reported experimental value. The sensitivity of the molecule was also estimated from the electrostatic imbalance parameter and has the value ν = 0.242. The isosurface of the electrostatic potential of the molecule displays a high negative electrostatic potential region around the tetrazole ring and the nitramine N–N bond, which are the possible reactive locations in the molecule.
EN
The crystal structure of dimethylnitraminotetrazole has been predicted, based on systematically searching for densely packed structures within common organic crystal coordination types, followed by lattice energy minimization. The predicted crystal structures almost match the reported crystal structure determined by X-ray diffraction analysis. To understand the effect of the initial molecular geometry on the crystal packing, the crystal structure simulation was carried out for molecules taken from different environments, such as the X-ray structure (crystal field) and also from ab initiocalculations (gas phase). The predicted crystal structures from both environments are very similar to the reported X-ray structure with a maximum deviation of 4.5%. The crystal density predicted from both methods is close to that reported. The bond topological, energetic and electrostatic properties of the isolated molecule from the predicted crystal structure have been determined using Bader's theory of atoms in molecules. The bond topological characterization reveals that the C-N bond is the weakest bond in the molecule. A large electronegative potential is found in the vicinity of the NO2group and the nitrogen-rich region of the tetrazole ring; these are probably the reactive sites of this molecule.
EN
Ab initio and density functional theory (DFT) calculations were carried out on the energetic propellant molecule 2,4,6-trinitro-1,3,5-triazine (TNTA) to understand its bond topology and its energetic properties using the theory of atoms in molecules (AIM). The DFT method predicts that the electron density ρ bcp (r) at the bond critical points of ring C-N bonds is ∼ 2.34 e Å -3 and the corresponding Laplacian ∇ 2 ρ bcp(r) is ∼ -24.4 e Å -5 ; whereas these values are found to be very small in the -NO2 group attached to C-N bonds [ρ bcp(r): ∼ 1.73 e Å -3 and Δ 2 ρ bcp (r): ∼ -14.5 e Å -5 ]. The negative Laplacian values of C-NO 2 bonds are significantly lower which indicates that the charges of these bonds are highly depleted. The C-NO2 bonds exhibit low bond order (∼ 0.8), as well as low (∼ 56.4 kcal/mol) bond dissociation energy. As we reported in our earlier studies, we found high bond charge depletion for these bonds, which are considered the weakest bonds in the molecule. The frontier orbital energies exhibit a wide band gap, which is larger than those of existing molecules TATB, TNT and TNB. The impact sensitivity (H 50 %) (4.2 m) and oxygen balance (2.77%) were calculated and compared with related structures. Large negative electrostatic potential regions were found near the nitro groups where reaction is expected to occur. The relation between charge depletion ∇ 2 ρ bcp(r) and the electrostatic potential at the bond midpoints V mid reveals the sensitive areas of the molecule.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.