Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electrostatic discharge sensitivity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The sensitivity of nanothermites to electrostatic discharge (ESD) has been noted by many authors. In the present work, nanothermites have been prepared using aluminium fuels with oxide (O-Al), palmitic acid (L-Al) and Viton (V-Al) passivation and CuO, Fe2O3 and MoO3 oxidants, as well as binary oxidant mixtures. Fuel- and oxidant-based ESD sensitivity trends of O-Al ≈ L-Al >> V-Al and MoO3 >> CuO ≈ Fe2O3 were observed with binary oxidants affording intermediate sensitivities. In the majority of cases, with the exception of high proportions of MoO3 oxidant, nanothermites containing V-Al fuel were the least sensitive to ESD at > 0.156 J. Resistivity measurements have been made for the fuels and oxidants and follow the trends V-Al >> O-Al ≈ L-Al and MoO3 >> Fe2O3 > CuO. V-Al resistivity of ca. 1011 Ω·cm exceeds that of the oxidants studied. An ESD sensitivity trend, based on a reduced proportion of spark current carried by the aluminium fuel, is proposed and was consistent with the observed ESD and resistivity data.
EN
The electrostatic hazards of nitramine explosives (RDX, HMX) were assessed in this paper. The resistivities of different particle-size RDX and HMX were tested by a device designed and manufactured according to the standard ISO/IEC 80079-20-2:2016. This work shows that the resistivities of uncompacted RDX and HMX increase as the particle size decreases. Charging characteristics test experiments were also carried out using a so-called sieve method. Using this method, the influence of aperture size on charge accumulation of RDX was studied, and the characteristics of electrostatic accumulation of different particle-size RDX and HMX sieved with 50 mesh standard sieve were compared. The results show that the absolute value of the charge accumulation increases as the mesh number increases (i.e. the aperture size decreases), and increases as the particle size is decreased, indicating that nano-sized RDX and nano-sized HMX accumulate static electricity more easily than conventional micron-sized ones. Finally, the electrostatic discharge (ESD) sensitivity of nano-sized RDX and nano-sized HMX was investigated. Nano-sized nitramine explosives were found to have a higher ESD sensitivity than micron-sized ones.
EN
Most primary explosives are non-conductors, easily accumulate charge when contacting with and separating from other materials, and are sensitive to electrostatic discharge (ESD). In order to reduce the number of accidents caused by ESD initiation of primary explosives, studies on their electrostatic hazards are necessary. This work presents comprehensive experimental results of electrostatic discharge sensitivity and chargeability of tris(carbohydrazide)zinc perchlorate (ZnCP) under different conditions. The influences of the testing conditions, of devices, particle size, ambient temperature and relative humidity on the electrostatic discharge sensitivity and chargeability have been investigated in detail, and the quantitative regression equations obtained.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.