Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electrospun fibers
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Fibrous scaffolds based on (bio)polymers are observed as mimicking the microstructure of the extracellular matrix. Thus, they are considered as an example of a utilitarian scaffold, useful for the regeneration of various types of tissues. The techniques described in the literature are well known to obtain submicrometric and nanometric fibers that, when randomly arranged, mimic the ECM. The biomimetic scaffold criterion might be even better reflected if the cell adhesion sites are present on the surface of such fibers. They promote the formation of the focal adhesion contact or facilitate the formation of a protein film on the fiber surface. Such a process is enhanced by an appropriate physical or chemical modification that activates the protein adsorption and the subsequent cell adhesion. The aim of this paper is to present different methods of physical and/or chemical modifications of fibrous materials: which can serve as scaffolds to support the regeneration processes of various tissues. In terms of physical methods, only weak interactions between the surface and the modifier were observed. This technique is simple but not durable. Chemisorption used as a second method of fiber modification is possible if a covalent or ionic bond is formed between the fiber and the modifier. Therefore, the chemical adsorption may not be fully reversible and requires a sequence of chemical actions to form a chemical bond. The most commonly used methods are the combined methods where the first step is the physical activation of the fiber surface, which facilitates the chemical modification step.
EN
Simple and economical methods for chiral separations are always needed in synthesis and drug development and as biomarkers, besides many other useful applications. Cyclodextrins (CDs) are chiral host molecules and have been used to separate a number of chiral analytes. In this study, we have successfully prepared electrospun films of β-CD incorporated into polyvinyl alcohol (PVA) through glutaraldehyde (GA) crosslinking. These films of β-CD-PVA-GA electrospun fibers are characterized by Fourier transform infrared (FTIR) and scanning electron microscopy (SEM), which were subsequently used for thin-layer chromatography (TLC)-based enantiomeric separation of histidine and serine pairs. Amino acids were detected by spraying the chromatograms with the ninhydrin solution. Among various solvent systems employed, it was found that the separation of serine enantiomers with a resolution of 1.6 was possible with the mobile phase ethanol–butanol–ethyl acetate–water–acetone (4:5:5:0.5:1.5, v/v), and histidine enantiomers with a resolution of 1.4 were possible with the mobile phase ethanol–butanol–ethyl acetate–water–acetone (4:5:4.5:0.5:1.5, v/v). This proves that the prepared stationary phase is efficient in enatioresolution of selected amino acid pairs and can be further examined for physiological samples.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.