Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 7

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electronic navigational charts
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Navigational charts are essential tools for marine navigation. But how accurate are the navigational charts that we use when going sailing? Do we really know how much faith can be placed in them? All charts, whether paper or electronic, contain data, which varies in quality due to the age and accuracy of individual surveys. In general, remote areas away from shipping routes tend to be less well surveyed, and less frequently, while areas of high commercial traffic are re-surveyed frequently to very high levels of accuracy, particularly where under-keel clearances are small. It is quite accurate to consider a chart as a jigsaw of individual surveys pieced together to form a single image. Having the necessary skills to determine how much confidence should be placed in the surveys, which combine to form a chart, should be a requirement for any sailor venturing into unfamiliar waters. When the International Hydrographic Organization (IHO) developed the S-57 standard for Electronic Navigational Charts (ENCs), this problem was recognized and it was decided that the quality of survey data used to compile ENCs had to be encoded within a composite data quality indicator ‘Category of Zone of Confidence’ (CATZOC) to assist seafarers in assessing hydrographic survey data and the associated level of risk of navigating in a particular area. According to IHO S-67, the accuracy of Electronic Navigational Charts is not impressive and leaves much to be desired. The author discusses these apparent shortcomings of ENCs and present erroneous approaches to this problem, so common in the seafaring community.
PL
Mosty są jednymi z ważniejszych obiektów w elektronicznych mapach nawigacyjnych. Obecnie można korzystać z wielu źródeł do tworzenia map, takie jak mapy zasadnicze, ortoobrazy czy opracowania w postaci rysunków technicznych. Niestety, nie zawsze powyższe materiały są odpowiednie do pozyskiwania danych mostów. Na mapach zasadniczych nie zawsze zachowany jest rzeczywisty kształt podpór, na ortoobrazach wszystkie elementy pokrycia terenu podlegają przesunięciom radialnym względem środka rzutu zdjęcia, natomiast rysunki techniczne nie posiadają punktów referencyjnych umożliwiających zarejestrowanie danych do układu współrzędnych. W artykule przedstawiono wykorzystanie naziemnego skanera laserowego do kartowania mostów, od etapu pozyskiwania danych do etapu pozyskania danych wektorowych. W badaniach dokonano analizy zasięgu skanera w aspekcie skaningu dziennego oraz nocnego, omówiono problemy związane ze składaniem chmur punktów, omówiono proces rejestracji projektowej chmury punków do układu współrzędnych oraz proces wektoryzacji. Finalnie sprawdzono dokładność danych wektorowych na postawie niezależnego pomiaru punków kontrolnych. Uzyskane różnice pomiędzy punktami kontrolnymi a danymi wektorowymi w wielkości średniej wartości 4 cm oraz maksymalnej 8 cm, wskazują na zasadne wykorzystanie tej techniki do kartowania mostów w elektronicznych mapach nawigacyjnych. W etapie końcowych zestawiono wszystkie czynności związane z pozyskaniem danych oraz kartowaniem danych wektorowych w postaci diagramu przepływu pracy.
EN
Bridges are one of the most important objects of electronic navigation maps. Presently, multiple sources to create maps, such as basic maps, orthoimages or technical drawings, can be used. Unfortunately, these materials are not always suitable for collecting bridge data. Basic maps do not always present correct shapes of the supports, on orthoimages all land cover elements are subject to radial shifts, relative to the projection centre, and drawings do not have reference points to allow for data registration to the coordinate system. The paper presents the use of terrestrial laser scanning for mapping bridges, from data collection to acquisition of vector data. The study analyzes the range of scanning performed in day and night conditions, discusses the problems associated with point clouds combination, discusses the process of the project point cloud registration to the coordinate system and the data vectorisation process. Finally, the accuracy of vector data was analysed on the basis of independent measurement control points. The resulting differences between the checkpoints and the vector data with the average value of 4 cm and the maximum value of 8 cm, indicate that the use of this technique for mapping bridges on electronic navigation charts is justified. In the final stage, all the activities related to the acquisition of mapping data and vector data are presented in the form of the workflow diagram.
EN
In the paper the author tries to present the results of monitoring the implementation of the Electronic Chart Display Information System (ECDIS) to ensure that issues identified in regard to the anomalous operation of some ECDIS are collated, analyzed, communicated and resolved as speedily as possible to maintain the safety of navigation and to assist the smooth transition from paper to digital navigation.
PL
W czasach rozwijającego się transportu wodnego, stawia się wymogi aby porty morskie i morsko-rzeczne przyjmowały coraz większe jednostki pływające. Zarządca portu musi spełnić warunek zachowania bezpiecznej głębokości dla wpływających statków, a kapitan lub pilot wprowadzający jednostkę na akwen portowy musi zapewnić bezpieczną nawigację na akwenie portu. Istotnym elementem mającym wpływ na bezpieczeństwo portu są mapy nawigacyjne. Dotychczas stosowane mapy papierowe, zostają stopniowo zastępowane przez elektroniczne mapy nawigacyjne (ang. ElectronicNavigationalCharts, ENC), które odpowiadają szczegółowo opisanym standardom przyjętym przez Międzynarodową Organizację Hydrograficzną (ang. International Hydrographic Organization, IHO).IHO w swoich publikacjach: S-57 oraz S-52 przedstawia format kodowania ENC oraz sposób prezentacji danych na ekranie. Standard S-44 opisuje wymagania dokładnościowe pomiarów batymetrycznych, które są nieodzownym elementem typowej mapy ENC. Do tworzenia map ENC wykorzystuje się dane z różnych źródeł, tj. pomiary terenowe, ortofotomapy, zdjęcia satelitarne, materiały historyczne oraz pomiary batymetryczne. Dane pozyskane z różnych źródeł cechują się zróżnicowaną dokładnością. Kartowanie linii brzegowej uzależnione jest od dokładności rastra i najczęściej wymaga weryfikacji terenowej przy użyciu przyrządów geodezyjnych lub systemu GPS/RTK. Dokładności przy wykonywaniu pomiarów batymetrycznych zależą nie tylko od użytego sprzętu hydroakustycznego, ale również urządzeń peryferyjnych systemu batymetrycznego, np. dokładności pozycjonowania głowicy echosondy Autorzy niniejszego opracowania przedstawili analizę powyższych standardów i ich zastosowanie dotworzenia precyzyjnych map nawigacyjnych ENC. W ramach opracowania przygotowano i opisano geobazę rozszerzoną o dodatkowe obiekty mapowe.
EN
Nowadays, while maritime spedition is still in big progress, the requierements for maritime harbours and sea-river ports are to carry out the larger vessels. It is the harobour manager obligation to ensure the safe depth for entering vessels and the master of the vessel or pilot, to maintain safety of navigation during maneuvering in harbour basins. Used, so far, paper maps are gradually replaced by the electronic navigational charts (ENC), which are corresponding with the standards described in detail by International Hydrographic Organization (IHO). In its publication: S-57 and S-52, the Organization shows the ENCs encoding format and presentation of data on the screen. S-44 Standard describes the bathymetric measurement accuracy. The bathymetry is the essential element of typical ENC charts. Creating the ENC chart requires data from various sources, such as terrestrial measurements, ortophotos, satellite images, historical information and bathymetric surveying. Each of these data has its own precision and therefore has a different accuracy. Mapping of the coastline depends on the accuracy of the raster and usually requires the verification on the land, with usage of surveying tools or GPS-RTK. Precision in bathymetric surveying generates a potential errors of accuracy, due to the use of the acoustic equipment and also bathymetric systems peripherals sensors, such a position from the GPS antenna. In this article, the authors are presenting an analysis of standards and their application in production of the precise navigational charts ENC. Within the framework of this study, the extended with additional mapping objects geodatabase were described and prepared.
5
Content available remote The New Electronic Chart Product Specification S-101: An Overview
EN
The development of S-101 represents a major step forward in product specifications for Elec-tronic Navigational Charts (ENC). Based on the IHO geospatial framework standard S-100, S-101 will be-come the eventual replacement to S-57 ENCs. This paper will discuss the phased development approach that will lead to an ENC with improved functionality and better data handling throughout the ENC supply chain from producer to end-user, and will touch on several transition options that are under development.
EN
The Hamburg Port Authority (HPA) was about 42 month, between May 2006 and October 2009, the work package leader for the Port ECDIS work package within the integrated European research pro-ject named EFFORTS (Effective Operation in Ports). The Port ECDIS team was completed by the company's SevenCs (Germany), CARIS BV (The Netherlands) and the ISSUS Martime Logistics / TUHH (Germany). The HPA was responsible for the development of a proposal for a new Port ENC standard which can be used for navigation in ports on board of vessels, in PPU's (Portable Pilot Units), in VTMI-Systems, in a state of the art marine simulator, for port maintenance and other harbor related tasks. Masters and pilots approaching a seaport usually use an Electronic Chart Display and Information System (ECDIS) to obtain the required navi-gational information they need. Also the Harbor Master needs the same up-to-date information for the admis-sion process and to organize a safe and ease navigation in the port area. The common ECDIS standard sup-ports navigation in the open sea and coastal areas; the Inland ECDIS standard was developed for navigation on inland waterways. The chart requirements for maneuvering big ships in confined waters like narrow fair-ways (harbor access channels), turning and harbor basins, for port maintenance (dredging), fairway and chan-nel design and construction work, for TUG operation and for traffic management (VTMIS) are not sufficient-ly covered by the current ECDIS and Inland ECDIS standard with respect to chart scale, accuracy, chart objects, attributes (“object catalogue”, in future "feature catalogue") and topicality and call for a special Port ENC. Managing bigger vessels, increasing traffic, less harbor space, berth organization, dredging purposes etc. requires accurate and up-to-date high-resolution geographic and bathymetric data to provide all necessary information. The Port ENC it is not just about producing better electronic charts (the Port ENC or PENC) to be shown in the navigation displays of various applications. Port-ECDIS addresses user groups of other do-mains as well (maintenance, dredging, planning, simulation, engineering, TUG assistance, VTMIS, voyage or route planning). Often they have the need to look at the data not only as a chart but also in 3D. That means additional data representations are required. The Port ENC must be able to interact with other port related data sources for a more beneficial use and to improve the interoperability of harbor related tasks. The Port ENC could also play a fundamental role in the e-Navigation concept!
EN
River information systems (RIS) are implemented in the countries of the Community in accordance with the requirements of the Directive 2005/44/EU. In Poland, the requirement to implement RIS will cover 97.3 km of inland water route from Szczecin to Ognica. Key elements in the RIS system are inland electronic navigational maps for inland navigation (Inland ECDIS). In the paper, problems connected with production of cells of electronic navigational maps for inland navigation are presented. Basic dilemmas of acquiring and preparing databases for Inland ECDIS are discussed.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.