in the bath on the kinetics of the cathodic reaction as well as composition, morphology, microhardness and corrosion resistance of Co/SiC composite coatings. Design/methodology/approach: Co/SiC composite coatings were deposited from a chloride-sulfate bath at two current densities (0.5 and 1 A/dm2) and various SiC powder concentrations (10-50 g/dm3). SiC content in the composites was determined by an image analysis. The microstructure was studied using optical and atomic force microscopes. Microhardness and corrosion resistance (in H2SO4) of the deposits were determined as a dependence on the SiC content in the coatings. Findings: SiC incorporation increased (15-36 vol%) under powder addition to the bath, but increase in the current density enhanced cobalt matrix deposition. The last one resulted in lower particles contents in the coatings accompanied by an increase in the current efficiencies. Microscopic observations of the coatings revealed uniform distribution of the particles within matrix. Microhardness of the composites was 200-280 HV. Corrosion resistance of the coatings was improved a little at higher SiC content in the composites. Practical implications: The paper describes the possibilities of codeposition of SiC particles with cobalt matrix. Originality/value: The results of studies and conclusions presented in the paper are consecutive data complementing knowledge on codeposition of ceramic particles with cobalt.
Ni-P-TiO2 active cathodes were prepared by simultaneous electrodeposition of Ni and TiO2 on a Cu substrate from a solution in which TiO2 particles were suspended by stirring. Electrodeposition was carried out under galvanostatic conditions in the range of current densities: 200-240 mA . cm-2 for 0,5 h. For comparison Ni-P layers were also obtained under the same conditions. X-ray diffractometer, scanning electron microscope and atomic absorption spectroscope were used for physical and chemical characterization of the layers. It was ascertained that the introduction of TiO2 to the amorphous Ni-P layers, irrespective of environment, leads to an increase in the rate of hydrogen evolution in comparison with conventional Ni-P layers.
PL
Aktywne katody Ni-P-TiO2 otrzymywano przez jednoczesne elektroosadzanie Ni i TiO2 na podłożu Cu z roztworu, w którym cząstki TiO2 utrzymywano w zawiesinie, stosując ciągłe mieszanie. Elektroosadzanie prowadzono w warunkach galwanostatycznych w zakresie gęstości prądowych: 200-240 mA.cm-2 przez 0,5 h. W celach porównawczych otrzymano w tych samych warunkach warstwy Ni-P. Do fizycznej i chemicznej charakterystyki warstw użyto dyfraktometru rentgenowskiego, skaningowego mikroskopu elektronowego i spektrometru atomowej absorpcji. Dowiedzono, że - niezależnie od środowiska - wbudowanie TiO2 do amorficznych warstw Ni-P prowadzi do wzrostu prędkości wydzielania wodoru w porównaniu z konwencjonalnymi wartwami Ni-P.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.