Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electro-Fenton
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Water pollution and the lack of access to clean water are general global problems that result from the expansion of industrial and agricultural activities. Petroleum refinery wastewaters are considered as a major challenge to the environment and their treatment is mandatory. The present work investigated the removal of chemical oxygen demand (COD) from petroleum refinery effluents generated from the Al-Dewaniya petroleum refinery plant located in Iraq by utilizing a novel graphite–graphite electro-Fenton (EF) system. The electrochemical reactor was a tubular type with a cylindrical cathode made from porous graphite and concentric porous graphite rode acts as an anode. By adopting the response surface methodology (RSM), the impacts of different operating variables on the COD removal were investigated. The optimal conditions were a current density of 25 mA/cm2, FeSO4 concentration of 1.4 mM, and electrolysis time of 90 minutes, which resulted in the COD removal efficiency (RE%) of 99% at a specific energy consumption (SEC) of 10.34 kWh/kg COD. The results indicated that both current density and concentration of FeSO4 have a major impact on the elimination of COD, while time has a minor effect. The adequacy of the model equation was demonstrated by its high R2 value (0.987). The present work demonstrated that the graphite–graphite EF system could be considered as an effective approach for removing of COD from petroleum refinery wastewaters.
EN
Sludge conditioning is an important stage in sludge management. In the present study, a sequence of freeze/thaw-electro-Fenton process was designed and specific resistance filtration (SRF) was monitored during sludge conditioning as an important factor in sludge dewaterability. Furthermore, protein and polysaccharide concentrations were measured during the experiments. Results showed that the lowest SRF value contributed to −10°C in freezing process which showed a reducing trend by decreasing solution pH. In addition, results revealed that solution pH less than 3 caused a significant improvement in sludge dewatering; so the lowest SRF has been registered at pH = 2. By increasing current intensity from 0.5 to 1A, SRF values were reduced and then followed by an enhancement with increasing current intensity to 3.2 A. The lowest SRF value (6.1 × 104 m/kg) was obtained at H2O2 = 30 mg/L which was the best conditions for sludge dewatering.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.