Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electric motor bearings
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Electric motors are the core equipment of industrial production, and rolling bearings are the key parts that are most prone to failure during the operation of electric motors. In order to accurately diagnose bearing faults and improve equipment reliability, this study extracts features from motor vibration signals through ensemble empirical mode decomposition, and classifies signal features using support vector machines. In addition, an optimized GWO is introduced to improve the hyperparameter settings of the support vector machine model, enhancing the fault classification ability, and ultimately constructing a new diagnosis model. The new model had the highest fault classification accuracy of 96.6%, the highest precision of 94.58%, the highest F1 score of 95.18%, and the shortest running time of 8.07 seconds. In addition, its MSE, RMSE, and MAE for outer ring fault detection were the lowest, at 0.072, 0.268, and 0.189, respectively, with a diagnosis time of 7.33 seconds, significantly better than comparison models. From this, the model can enhance the diagnosis accuracy and efficiency, and also provide an effective solution for motor bearing fault diagnosis in industrial applications.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.