Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  electric car battery
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Thermal management of high voltage accumulators used for electric mobility is a complex topic, due to many limiting factors like size, weight, cost of development and implementation, and safety. Advancements in technology created cheaper cells, that can store more energy and have higher power density, which enabled manufacturers to build many new electric vehicles. However, accumulator in EVs is still the most expensive part of electric powertrain and cells are very sensitive to operating conditions. Temperatures outside of their specific range can cause quicker loss of their capacity, lower power performance or even cause thermal runaway events that are almost inextinguishable - that’s why proper thermal management receives a lot of attention. This paper discloses important aspects of accumulators, that have to be considered during thermal design, reviews every current solution, their advantages and disadvantages, with examples of EVs that use them. Current trends and possible changes in near future are then disclosed, to create good knowledge base about current situation and trends on the market to make early phase of conceptual work easier.
PL
Zarządzanie termiczne akumulatorami wysokiego napięcia stosowanymi w pojazdach elektrycznych jest złożonym zagadnieniem ze względu na wiele czynników ograniczających, takich jak rozmiar, waga, koszty opracowania i wdrożenia oraz bezpieczeństwo. Postęp technologiczny pozwolił na stworzenie tańszych ogniw, które mogą przechowywać więcej energii i mają większą gęstość mocy, co umożliwiło producentom wyprodukowanie wielu nowych pojazdów elektrycznych. Mimo to akumulatory w pojazdach elektrycznych nadal stanowią najdroższą część elektrycznego układu napędowego, a ogniwa są bardzo wrażliwe na warunki eksploatacji. Temperatury wykraczające poza właściwy dla nich zakres mogą powodować szybszą utratę pojemności, obniżenie wydajności energetycznej, a nawet wywoływać zjawiska ucieczki cieplnej, które są prawie niemożliwe do ugaszenia - dlatego odpowiednie zarządzanie termiczne jest przedmiotem szczególnego zainteresowania. W tym artykule przedstawiono ważne aspekty akumulatorów, które należy wziąć pod uwagę podczas projektowania termicznego, dokonano przeglądu wszystkich obecnie stosowanych rozwiązań, ich zalet i wad, wraz z przykładami pojazdów elektrycznych, które je wykorzystują. Następnie przedstawiono aktualne trendy i możliwe zmiany w najbliższej przyszłości, aby stworzyć dobrą bazę wiedzy na temat obecnej sytuacji i trendów na rynku, co ułatwi wczesną fazę prac koncepcyjnych.
PL
Cel: Wykonano analizę najnowszych badań w zakresie zagrożenia pożarowego, jakie mogą powodować akumulatory litowo-jonowe stosowane do zasilania samochodów elektrycznych. Na podstawie uzyskanych wyników badań ustalono kierunek dalszych badań w zakresie bezpieczeństwa pożarowego akumulatorów litowo-jonowych i samochodowych. Metody: Praca została oparta na analizie badań naukowców m.in. z USA i Chin, których wyniki zostały przedstawione w różnych czasopismach naukowych o zasięgu międzynarodowym, a także w materiałach konferencyjnych o zasięgu krajowym. Wyniki: Analiza literatury wskazuje, że badania w zakresie bezpieczeństwa pożarowego akumulatorów litowo-jonowych prowadzone są na całym świecie, co jest podyktowane ciągłym rozwojem tego typu urządzeń. Uzyskane wyniki badań wskazują, że pojedyncza bateria litowo-jonowa może wytworzyć od 6 do 10 kW energii i dużą ilość niebezpiecznych produktów spalania, zwłaszcza HF, POF3. Ponadto przedstawione wyniki badań jednoznacznie potwierdzają, że ilość energii uwalnianej przez baterię litowo-jonową zależy bezpośrednio od stopnia jej naładowania. Opierając się na wynikach badań w pełnej skali, średnia ilość wody potrzebnej do ugaszenia palącej się baterii samochodu elektrycznego waha się od 2500 do 6000 litrów. Tak duże zapotrzebowanie w wodę może powodować, że do ugaszenia takiego pożaru nie wystarczy tylko jeden pojazd pożarniczy. Ilość promieniowania cieplnego w odległości półtora metra od modelu płonącego samochodu z elementami wykończeniowymi waha się od 8,1 do 11,8 kW/m2. Badania laboratoryjne wody użytej do gaszenia samochodu wykazały obecność w niej chlorowodoru (HCl) oraz fluorowodoru (HF) w stężeniach odpowiednio dwu- trzykrotnie oraz stokrotnie wyższych niż normalne. W próbkach wody nie znaleziono żadnych innych substancji toksycznych lub korozyjnych. Wnioski: Konieczne jest prowadzenie dalszych prac koncentrujących się na bezpieczeństwie pożarowym w odniesieniu do baterii akumulatorowych pojazdów elektrycznych. Z wykonanej analizy tematu wynika, że istnieje konieczność prowadzenia badań w makroskali w celu określenia najlepszych sposobów gaszenia pożarów baterii akumulatorowych pojazdów elektrycznych. Dodatkowo niezbędne jest przeprowadzenie analizy możliwych do wystąpienia zagrożeń oraz opracowanie optymalnego sposobu gaszenia, a także określenie najskuteczniejszego środka gaśniczego, który może zostać do tego celu użyty. Istotne jest również opracowanie modelu matematycznego akumulatorów litowo-jonowych, który uwzględniać powinien kształt geometryczny baterii akumulatorowej oraz jej skład chemiczny.
EN
Aim: To carry out an analysis of the latest research in the field of fire hazard lithium-ion cells, which are used in accumulator batteries of electric cars. Proceeding from the obtained results of the research, to determine the direction of the subsequent research in the field of fire safety of lithium-ion accumulator batteries of electric cars. Methods: This work is based on the fundamental research of scientists from the US, China and other countries of the world, the results of which were presented in a variety of world scientific journals, conferences and national reports. Results: An analysis of literature sources has shown that research in the field of fire safety of lithium-ion batteries is carried out all around the world, as this technical device is constantly being modified and improved, as dictated by today's realities. The obtained research results show that the elementary lithium-ion cell contributes during combustion to the production of 6 to 10 kW of energy and a rather large number of dangerous combustion products, especially HF, POF3. Also, the results of the studies show unambiguously that the amount of energy released by lithium-ion cells supply as well as the amount of hazardous combustion products will depend on the degree of their charge. Furthermore, the shown research results unequivocally confirm that the amount of energy released by the lithium-ion battery depends on the degree of its charge. Based on the results of full-scale experiments, the average amount of water necessary to extinguish the battery of an electric car varies from 2500 to 6000 litres, which can exceed the amount of water carried by a single fire truck. The amount of thermal radiation at a distance of 1.5 meters from the model of a burning car with decor elements, is between 8.1 and 11.9 kW/m2. Laboratory analysis of samples of water, used to extinguish a car, showed the presence of hydrogen chloride (HCl) and hydrogen fluoride (HF) in concentrations 2–3 times higher and more than 100 times higher, than normal registered levels, respectively. No other corrosive or toxic compounds were found in the water samples. Conclusions: Subsequent work to investigate the fire safety of electric car accumulators and their supply elements can be devoted to conducting full-scale experiments on the extinguishing of real consumer electric cars. Followed by an assessment of the problems of access to batteries and the difficulty of their extinguishing, the risk of electric shock from the battery of an electric car and the possibility of using various extinguishing media should be explored. It is also very urgent to develop a mathematical model for the heating of a lithium-ion battery that takes into account the geometric shape of the element and its chemical composition.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.