Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  elation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The E- transformation is a quadratic transformation in the projective 2D space for which the base constitute the circle n2 and the center W which lies on this circle. Specifically, the authors present the results of the further discussion on the properties of the pencils of super osculating conics. The theorem on projective relation between the elements of the pencil of super osculating conics and the range (of the second order) of the conics’ centers has been proved.
PL
Praca jest kontynuacją artykułu [4]: Pęki stożkowych ściśle stycznych p2 1=2=3=4 oraz artykułu [5]: Stożkowe środków pęku p2 1=2=3=4, w których omówiono przekształcenie kwadratowe E. Bazą przekształcenia jest okrąg n2, a środkiem przekształcenia punkt W leżący na tym okręgu.Stwierdzono, iż wszystkie proste , które przechodzą przez punkt W przekształcają się w stożkowe wzajemnie ściśle styczne przechodzące przez trzy punkty 1=2=3 pokrywające się z punktem W. Środki poszczególnych stożkowych pęku leżą na stożkowej, którą nazwano stożkową środków i oznaczono s2. W pracy udowodniono twierdzenie o relacji rzutowej między elementami pęku stożkowych nadściśle stycznych a szeregiem drugiego rzędu, którego elementami są środki stożkowych, które powstają w wyniku zastosowania transformacji E.
2
Content available The conic of centers S2 of a pencil P2 1=2=3,4
EN
The E-transformation is quadratic in the projective 2-dimensional space and based on the circle n2 and the center W, which lies on the circle n2 . In the E-transformation to the straight line a’ corresponds a conic a2. The elation has been defined, where a’ is a vanishing line, the line ta parallel to a’ and passing through the point W is the axis of elation. All lines that do not pass through the center of the transformation W will correspond to osculary conics passing through the three points 1=2=3 coinciding with the center W. The centers of these conics make also a conic of centers s2. Special cases are distinguished dependent on whether the base quadrangle 1=2=3,4 is concave or convex. The case with point 4 lying at infinity has been discussed. Two theorems have been formulated and proved.
PL
Praca jest kontynuacją artykułu „Pęki stożkowych nadściśle stycznych (P2 1=2=3,4)” ([6]), w której omówiono przekształcenie kwadratowe „E”, dla którego bazą jest okrąg n2, natomiast środkiem przekształcenia jest punkt W leżący na okręgu n2. Stwierdzono, że wszystkie proste, które nie przechodzą przez punkt W, przekształcają się w stożkowe wzajemnie ściśle styczne czyli przechodzące przez trzy punkty 1=2=3 pokrywające się z punktem W. Środki poszczególnych stożkowych pęku leżą na stożkowej, którą nazwano stożkowa środków i oznaczono s2. W pracy omówiono trzy przypadki, w których w zależności od czworokąta podstawowego 1=2=3,4 stożkowa środków s2 jest hiperbolą, elipsą, parabolą. Przedstawiono również twierdzenie, z którego wynika, iż mając zadaną stożkową środków s2 można wyznaczyć bazę n2 przekształcenia „E” oraz wyznaczyć średnice sprzężone lub asymptoty poszczególnych stożkowych pęku P2 1=2=3,4. W pracy pokazano, że pęk stożkowych P2 1=2=3,4, którego elementami są stożkowe a2, b2, c2,…. jest rzutowy do szeregu punktów rzędu drugiego, którego podstawą jest „stożkowa środków” s2, a elementami są punkty Sa, Sb, Sc, ... będące środkami stożkowych a2, b2, c2,…..
EN
A generalization of the well known theorem about the division of the common curve of two quadrics in two parts which are tangent to a common sphere is given.
PL
W pracy przedstawiono dowód twierdzenia o rozpadzie linii przenikania dwóch powierzchni drugiego stopnia stycznych do wspólnej kwadryki wzdłuż stożkowych. Idea dowodu polega na ustaleniu kolineacji środkowych zachodzących pomiędzy płaszczyznami stożkowych styczności i dowolną płaszczyzną, a następnie, korzystając z kolineacji pomiędzy przekrojami przenikających się powierzchni odpowiednio dobraną płaszczyzną, pokazanie, że przekroje te jednoczą się, uzyskując w ten sposób wspólną stożkową obu powierzchni. Sformułowano i udowodniono analogiczne twierdzenie dla dwóch kwadryk wpisanych w ten sam stożek.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.