Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  effective area
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
For some industries such as automotive, defence, aerospace, pharmaceutical manufacturing, dynamic pressure measurement is an important requirement. In a primary level dynamic pressure measurement system with a drop weight method, the dynamic pressure value is calculated using parameters such as the effective area value depending on the piston cylinder unit, the maximum acceleration value measured by a laser interferometer. On the other hand, the type of liquid used in the measuring head is another important factor affecting repeatability and providing ease of measurement. In this study, a new measurement head, piston and cylinders were designed, manufactured and the Taguchi method was used to accurately determine some parameters affecting the measurements in a dynamic primary pressure measurement system operating with the drop weight method. In the studies carried out, four pistons, four cylinders, four sampling frequency values and two liquid types were considered. By using the Taguchi method, the optimum parameters of the dynamic pressure measurement system with drop weight method were determined with only sixteen experiments instead of one hundred and twenty-eight.
EN
Accommodation of many channels in dense wavelength division multiplexing networks raises the average power density of the optical networks. This results in severe nonlinear effects in the optical networks. An optimized design of non-zero dispersion shifted fiber with an enormous effective area can overcome this nonlinear effect and also offer a minimum bending loss and splice loss for a dense wavelength division multiplexing system. In this paper, the alpha-peak profile is utilized for calculating electrical field distribution and designing the refractive index profile of the non-zero dispersion shifted fiber. This fiber has a high effective area of about 120 μm2. Conjointly, the accomplished fiber has a very low bending loss of 1.40×10–14 dB/km and reduced splice loss of 4.46×10–3 dB. Due to this high effective area, the dense wavelength division multiplexing network performance is upgraded by diminishing nonlinear effects. In addition, the newly designed fiber has also a very low dispersion slope (0.057 ps/nm2km). Thus, the proposed fiber is optimized to handle high bandwidth and multiple high bit-rate wavelength channels without nonlinear impairments in the 1.55 μm window long-haul dense wavelength division multiplexing systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.