Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  eco-friendly synthesis
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The present work aimed to synthesize organic and inorganic quantum dots (QDs) and discuss their bioconjugation strategies. Design/methodology/approach: We have prepared 3 different QDs, organic (Carbon [CQDs]) and inorganic (Cadmium Sulphide [CdS] and Zinc Mercury Selenide [ZnHgSe]) quantum dots (QDs) and bioconjugation through in-situ and ex-situ route. These QDs have been characterized through UV-Vis spectroscopy and photoluminescence (PL) emission spectra. Their surface functional groups have been identified through Fourier-transform infrared (FTIR) spectroscopy. The bioconjugated quantum dots were tested through PL emission shift, Agarose electrophoresis, and Bradford assay technique. Findings: Successful synthesized QDs, and their bioconjugation has been confirmed through the previously listed characterization techniques. There are distinct differences in their emission peak, FTIR spectroscopy, and Bradford assay, which confirms their successful bioconjugation. Research limitations/implications: These bioconjugated QDs are difficult to filter from their unconjugated counterpart. Bioconjugation steps are extremely crucial. Practical implications: These QDs could be utilized for highly effective biolabelling and bioimaging in-vivo as well as in-vitro applications. Originality/value: The synthesis has been majorly modified, and the bioconjugation has been prepared in a novel method. There is limited reported work with this much description of the differences in conjugated and unconjugated QDs.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.