Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  earthquake precursors
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Is it possible to predict location, time and magnitude of earthquakes through identifying their precursors based on remotely sensed data? Earthquakes are usually preceded by unusual natural incidents that are considered as earthquake precursors. With the recent advances in remote sensing techniques which have made it possible monitoring the earth’s surface with diferent sensors, scientists are now able to better study earthquake precursors. Thus, the present study aims at developing the algorithm of classic PS-InSAR processing for obtaining crustal deformation values at the epicenter of earthquakes with magnitude larger than 5.0 on the Richter scale and with oblique thrust faulting and then after calculating temperature values using remotely sensed thermal imagery at the epicenter of same earthquakes; thermal and crustal deformation anomalies were calculated using data mining techniques before earthquake occurrence. In the next stage, taking the correlation between thermal anomalies and crustal deformation anomalies at the epicenter of the study earthquakes into account, an integrated technique was proposed to predict probable magnitude and time of oblique thrust earthquakes occurrence over the earthquake-prone areas. Eventually, the validity of the proposed algorithm was evaluated for an earthquake with a diferent focal mechanism. The analysis results of the thermal anomalies and crustal deformation anomalies at the epicenter of April 16, 2016, Japan-Kumamoto earthquake of magnitude 7.0 with strike-slip faulting, showed completely diferent trends than the suggested patterns by the proposed algorithm.
2
Content available remote A statistical damage model with implications for precursory seismicity
EN
Acoustic emissions prior to rupture indicate precursory damage. Laboratory studies of frictional sliding on model faults feature accelerating rates of acoustic emissions prior to rupture. Precursory seismic emissions are not generally observed prior to earthquakes. To address the problem of precursory damage, we consider failure in a fiber-bundle model. We observe a clearly defined nucleation phase followed by a catastrophic rupture. The fibers are hypothesized to represent asperities on a fault. Two limiting behaviors are the equal load sharing p = 0 (stress from a failed fiber is transferred equally to all surviving fibers) and the local load sharing p = 1 (stress from a failed fiber is transferred to adjacent fibers). We show that precursory damage in the nucleation phase is greatly reduced in the local-load sharing limit. The local transfer of stress from an asperity concentrates nucleation, restricting precursory acoustic emissions (seismic activity).
3
Content available remote Application of laser strainmeters to the study of earthquake physics
EN
The paper considers possibilities of applying laser strainmeters for the study of earthquake physics. One of laser strainmeters is described. A high efficiency of using the laser strainmeters for the study of earthquakes and their precursors is shown. In records of the spaced laser strainmeters, anomalous deformations propa-gating from the east to the west with the speed comparable with that of migration of earthquakes were found.
EN
Numerical simulations of the dislocation density evolution exhibit some perturbations which may be identified as seismic events. The influences of tidal stresses and random disturbances related to the material heterogeneities are analyzed. In relation to this analysis some problems of earthquake prediction and earthquake precursors are discussed. Occurrences of seismic events are very sensitive to small disturbances, while the great disturbances in tidal influence or in material properties cause the disappearance of the events.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.