Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dysfonia
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Cardiovascular disease is the leading cause of death worldwide. The diagnosis is made by non-invasive methods, but it is far from being comfortable, rapid, and accessible to everyone. Speech analysis is an emerging non-invasive diagnostic tool, and a lot of researches have shown that it is efficient in speech recognition and in detecting Parkinson's disease, so can it be effective for differentiating between patients with cardiovascular disease and healthy people? This present work answers the question posed, by collecting a database of 75 people, 35 of whom suffering from cardiovascular diseases, and 40 are healthy. We took from each one three vocal recordings of sustained vowels (aaaaa…, ooooo… .. and iiiiiiii… ..). By measuring dysphonia in speech, we were able to extract 26 features, with which we will train three types of classifiers: the k-near-neighbor, the support vectors machine classifier, and the naive Bayes classifier. The methods were tested for accuracy and stability, and we obtained 81% accuracy as the best result using the k-near-neighbor classifier.
EN
Recent research on Parkinson disease (PD) detection has shown that vocal disorders are linked to symptoms in 90% of the PD patients at early stages. Thus, there is an interest in applying vocal features to the computer-assisted diagnosis and remote monitoring of patients with PD at early stages. The contribution of this research is an increase of accuracy and a reduction of the number of selected vocal features in PD detection while using the newest and largest public dataset available. Whereas the number of features in this public dataset is 754, the number of selected features for classification ranges from 8 to 20 after using Wrappers feature subset selection. Four classifiers (k nearest neighbor, multi-layer perceptron, support vector machine and random forest) are applied to vocal-based PD detection. The proposed approach shows an accuracy of 94.7%, sensitivity of 98.4%, specificity of 92.68% and precision of 97.22%. The best resulting accuracy is obtained by using a support vector machine and it is higher than the one, which was reported on the first work to use the same dataset. In addition, the corresponding computational complexity is further reduced by selecting no more than 20 features.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.