Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dynamika relatywistyczna
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Theoretical and numerical analyses are presented concerning the conditions at which the charged particles of different masses can be accelerated to significant kinetic energy in the circularly polarized laser or maser beams and a static magnetic field. The studies are carried out using the analytical derivations of the particles dynamics and theirs kinetic energy. The presented illustrations enabled interpretation of the complex motion of particles and the possibilities of their acceleration. At the examples of an electron, proton and deuteron, the velocity, kinetic energy and trajectory as a function of the acceleration time at the resonance condition are illustrated in the appropriate graphs. The particles with larger masses require the application of enhanced magnetic field intensity at the resonance condition. However, this field intensity can be significantly reduced if the particles are preaccelerated.
PL
Stosując metody teoretyczną i numeryczną przebadano warunki, w których naładowane cząstki o rożnych masach można przyspieszać do znacznej energii w kołowo spolaryzowanej laserowej bądź maserowej wiązce z dodatkowym statycznym polem magnetycznym. Badania przeprowadzono za pomocą wyprowadzonych analitycznych relacji dotyczących dynamiki i kinetycznej energii cząstek. Dzięki stosunkowo licznym wykresom stała się możliwa interpretacja dość złożonego ruchu cząstek oraz przebiegu ich akceleracji. Na przykładach elektronu, protonu i deuteronu zostały zilustrowane zależności od czasu trwania akceleracji takich wielkości jak kształt trajektorii oraz kinetyczna energia. Wszystkie ilustracje dotyczą warunku rezonansu, czyli synchronizacji ruchów obrotowych cząstki i wektora natężenia pola elektrycznego. Czym większa masa cząstki, tym większe natężenie stałego pola magnetycznego jest niezbędne do uzyskania warunku synchronizacji. Jednak to natężenie można znacznie zredukować, jeśli cząstka będzie posiadała prędkość początkową.
2
Content available remote Difference in acceleration of electrons, protons and deuterons in a laser beam
EN
Purpose: The aim of this paper is to find in a numerical way the main differences in the trajectories and kinetic energies of electrons, protons and deuterons accelerated in the laser or maser beams propagating in a vacuum, with an additionally applied external static co-axial magnetic field. The accelerated particles to the well defined energies are of interest in many applications, among others in medicine or in processing of different materials. Design/methodology/approach: Due to differences in masses the comparison between the acceleration processes of electrons, protons and deuterons is possible to perform after appropriate parameters of radiation of a laser, maser and a static magnetic field have been designed. Findings: The quantitative illustrations of the calculation results in a graphical form enable to discuss the main differences in the acceleration process of electrons, protons and deuterons. It was found that the rate at which a particle gains the energy depends not only on the particle’s mass but also on the stage of the process. Due to the mass differences, in order to keep a particle inside the radiation beam, significantly different static magnetic fields should be used to each kind of a particle. The authors have found an answer to the question why the rate at which particles energy increases in time, is different for different particles and why the difference depends on a stage of the acceleration process. Research limitations/implications: Limits in the energy of accelerated particles are caused by the limits of laser or maser beam energy or power available at present and the static magnetic fields. Originality/value: The authors show, in an exact numerical way, the values of the acceleration equipment parameters which should be selected to obtain the desired energy of the accelerated particles. It is explained why the rate at which a particle gains the energy depends on the stage of the process and on the particle’s mass.
3
Content available remote Acceleration of charged particles in laser beam
EN
Purpose: The aim of this paper was to find parameters of the laser and maser beams in numerical ways with additionally applied external static axial magnetic field which satisfies the proper conditions for charged particle acceleration. Design/methodology/approach: The set acceleration was designed in order to obtain the possible high kinetic energy of the charged particles in the controllable manner. This was achieved applying a circularly polarized high intensity laser beam and a static axial magnetic field, both acting on the particle during the proper period. Findings: The quantitative illustrations of the calculation results, in a graphical form enabled to discuss the impact of many parameters on the acceleration process of the electrons and protons. We have found the impact of the Doppler Effect on the acceleration process to be significant. Increase in laser or maser beam intensity results in particle's energy increase and its trajectory dimension. However, increase in external magnetic field results in shrinking of the helical trajectories. It enables to keep the particle inside the laser beam. Research limitations/implications: Limits in the energy of accelerated particles arise from the limits in up-to-date available laser beam energy and the beam diameters. Originality/value: The authors show the parameters of the circularly polarized laser beam which should be satisfied in order to obtain the desired energy of the accelerated particles. The influence of the magnetic field strength is also shown.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.