Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dynamical core
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The anelastic nonhydrostatic model EULAG is a candidate for the future dynamical core of a numerical weather prediction model. Achieving such an objective requires a number of experiments focused on testing correctness of the solutions and robustness of the solver. In the spirit of this idea, a set of tests related to standard atmospheric problems was performed, of which the two regarding development and evolution of a supercell were employed as benchmarks of moist dynamics of the model. Their results are discussed in this paper. Development and evolution of a stormsystem with a set of characteristic features such as stormsplitting along with the generation of horizontal vorticity and cold pool formation is investigated. In addition, the influence of domain geometry, boundary conditions and subgrid-scale mixing is examined.
EN
In this paper, a feasibility of anelastic approach for numerical weather prediction (NWP) is examined. The study concerns the anelastic nonhydrostatic model EULAG as a prospective candidate for the new dynamical core of a high-resolution NWP model. Such an application requires a series of benchmark tests to be performed. The study presents the results of dry idealized two-dimensional linear and non-linear tests. They include evolution of cold and warm density currents in neutrally stratified atmosphere, inertia-gravity waves in short and long channels, as well as mountain gravity waves for a set of different flow regimes. Detailed comparison of the results with the reference solutions, based mainly on the results of compressible models, indicates a high level of conformity for all of the experiments. It verifies the anelastic approach as strongly consistent with the compressible one for a broad class of atmospheric problems. It also corroborates the robustness of EULAG numerics, an essential requirement of dynamical core of NWP model.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.