Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 87

Liczba wyników na stronie
first rewind previous Strona / 5 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dwutlenek tytanu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 5 next fast forward last
EN
Purpose: There are several advantages of using a biological technique to produce nanoparticles versus a chemical method. The primary goal of this work is to characterize and biologically synthesize titanium dioxide (TiO2) nanoparticles from Cynodon dactylon. The characterization has experimented with UV-Vis Spectroscopy, EDX analysis, SEM, XRD, and FTIR. Design/methodology/approach: The suggested study uses a simple biological technique to accomplish the systematic biological synthesis of TiO2 nanoparticles utilizing Cynodon dactylon plant extract and titanium tetra isopropoxide as a precursor. UV-Vis spectroscopy, Scanning Electron Microscopy (SEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-Ray Diffraction (XRD) are used to confirm the fabrication of the TiO2 nanoparticles. The plant extract as well as titanium-based nanoparticles of the herb, Cynodon dactylon will be tested for its antibacterial activity against human pathogens. This eco-friendly technique for nanoparticle synthesis is straightforward and adaptable to major commercial manufacturing and technological applications. Findings: Cynodon dactylon biosynthesis of TiO2 nanoparticles is efficient, nutrition dependent, does not employ hazardous compounds, and happens at neutral pH levels. The antibacterial study results show that TiO2 nanoparticles synthesized using Cynodon dactylon have good antibacterial properties. TiO2 nanoparticle method of action against bacteria is unknown. This is an alternative process for synthesising TiO2 nanoparticles, apart from other chemical protocols, since this is quick and non-toxic. The antimicrobial property of biologically synthesized TiO2 nanoparticles against Escherichia coli, Staphylococcus aureus, and Acinetobacter baumannii was tested at four different doses of 15 μl/mg, 25 μl/mg, 50 μl/mg, and 75 μl/mg. The present results revealed the 75 μl/mg concentration got the highest zone of inhibition (15, 13, 15 mm) for Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli. Research limitations/implications: Many nanoparticles smaller than 100 nm are firmly agglomerated with each other in the study. TiO2 nanoparticles absorb in the UV region of 200 to 400 nm. XRD measurements confirmed the presence of TiO2 nanoparticles in the biologically produced sample. In our work, EDX was used to confirm the existence of Ti after its synthesis by Cynodon dactylon. Practical implications: The biosynthesized TiO2 nanoparticles utilizing Cynodon dactylon plant extracts exhibit a good potent antibacterial activity. The proposed results showed that the TiO2 nanoparticles are well suited for biomedical applications. Originality/value: The suggested research identifies several eco-friendly, biological, and cost-effective procedures for manufacturing nano-coated herbal products. The agar well diffusion technique was used to assess antibacterial activities toward test pathogens such as Acinetobacter baumannii, Staphylococcus aureus, and Escherichia coli.
EN
In this study the mechanical properties of polypropylene (PP) with a small amount of TiO2, after UV-C exposure were preliminarily analyzed. The effectiveness of titanium oxide was evaluated in two alternative applications: TiO2 as the polymer filler and TiO2 as a protective outer coating. The samples were exposed to UV-C rays for 1000 hours. It was found that an addition of 5 wt.% TiO2 to PP matrix results in a 60% smaller decrease in Rg after 1000 h of exposure to UV-C than in the case of neat polypropylene. It was also found that the addition of TiO2 to the polypropylene matrix is more effective than TiO2 applied as a coating component. The Rg decrease after exposure is about 35% in this case. The research confirmed that TiO2 submicrometric particles seem to be a very good component in reducing the sustainability of polypropylene to UV radiation.
EN
Titanium dioxide with its ability to be a UV light blocker is commonly used as a physical sunscreen in the cosmetic industry. However, the safety issues of TiO2 application should be considered more in-depth, e.g., UV light-induced generation of reactive oxygen species which can cause DNA damage within skin cells. The proper modification of titanium dioxide to significantly limit its photocatalytic properties can contribute to the safety enhancement. The modification strategies including the process conditions and intrinsic properties of titanium dioxide were discussed. The selected examples of commercially available TiO2 materials as potential components of cosmetic emulsions dedicated for sunscreens were compared in this study. Only rutile samples modified with Al2O3 and/or SiO2 showed inhibition of photocatalytic activity.
PL
Właściwości samoczyszczące powierzchni cieszą się dużym zainteresowaniem ze względu na szerokie możliwości ich zastosowań w różnych gałęziach przemysłu (tekstylia, budownictwo, urządzenia sanitarne, części samochodowe, panele fotowoltaiczne, urządzenia elektroniczne, lotnictwo, kosmonautyka i in.). Powierzchnie samoczyszczące mogą mieć właściwości hydrofobowe lub hydrofilowe. Samoczyszczące tekstylia umożliwiają oszczędzanie wody, środków piorących, energii i czasu. Ponadto, są odporne na przenikanie wody i kumulowanie zanieczyszczeń na ich powierzchni. Opracowano metodę modyfikacji tkaniny bawełnianej w celu nadania jej właściwości samoczyszczących. Metoda ta opiera się na aplikacji poli(dimetylosiloksanu) oraz nanometrycznego dwutlenku tytanu na tkaninę bawełnianą.
EN
Self-cleaning properties of surfaces are of great interest due to the wide range of their applications in various industries (textiles, construction, sanitary equipment, automotive parts, photovoltaic panels, electronic devices, aviation, aerospace, etc.). Self-cleaning surfaces can have hydrophobic or hydrophilic properties. Self-cleaning textiles allow saving water, detergents, energy and time. Moreover, they are resistant to water penetration and accumulation of contaminants on their surface A method of modifying cotton fabric in order to make it self-cleaning has been developed. This method is based on the application of poly(dimethylsiloxane) with terminal hydroxyl groups and nanometric titanium dioxide to cotton fabric.
EN
Due to the modern requirements regarding the reliability of electrical devices operation, research on improving the parameters of materials and insulation systems, in particular high-voltage ones, used in the production, transmission and distribution of electricity is still valid. One of the research directions is the development and application of insulating materials modified with nanofillers. The paper presents the results of stability studies of selected dielectric properties of samples of insulation materials based on epoxy resin modified with titanium dioxide TiO2 nanopowders. Changes in parameters caused by different wt% nanofiller content and their long-term stability after 10,000 hours from manufacturing are compared and analyzed.
PL
Współczesne wymagania dotyczące niezawodności pracy urządzeń elektrycznych powodują, że wciąż aktualnymi są badania dotyczące poprawy parametrów materiałów i układów izolacyjnych, w szczególności wysokonapięciowych, stosowanych w wytwarzaniu, przesyle i rozdziale energii elektrycznej. Jednym z kierunków badań jest opracowanie i zastosowanie materiałów izolacyjnych modyfikowanych nanowypełniaczami. Referat przedstawia wyniki badań stabilności wybranych właściwości dielektrycznych próbek materiałów izolacyjnych na bazie żywicy epoksydowej modyfikowanej nanoproszkami tlenku tytanu TiO2. Porównane są i analizowane zmiany parametrów powodowane różną zawartością wt% nanowypełniacza oraz ich stabilność długoczasowa po 10.000 godzin od wytworzenia.
EN
The present study investigates the influence of pigmental impurities on glass fibre-reinforced polypropylene using model compounds to simulate the behaviour of recyclate-based compositions. Most industrial-quality (containing recyclate) PP compounds are black coloured (using carbon black pigment), with an almost unavoidable presence of inorganic white pigment (e.g. titanium dioxide) impurities. There are widespread beliefs in the compounding industry that such impurities have a detrimental effect on the mechanical properties of glass fibre-reinforced compounds, but up to now no systematic study of this problem from the industrial point of view has been reported. For this purpose, a range of compounds was prepared on a twin- screw compounding line and the properties were evaluated, with special focus on the mechanical properties. The results confirmed the strong influence of some white pigments, particularly titanium dioxide, and rejected the thesis of the detrimental action of carbon black.
EN
Modelling of titanium dioxide deagglomeration in the mixing tank equipped with a high shear impeller is presented in this study. A combination of computational fluid dynamics with population balance was applied for prediction of the final particle size. Two approaches are presented to solve population balance equations. In the first one, a complete population balance breakage kinetics were implemented in the CFD code to simulate size changes in every numerical cell in the computational domain. The second approach uses flow field and properties of turbulence to construct a mechanistic model of suspension flow in the system. Such approach can be considered as an attractive alternative to CFD simulations, because it allows to greatly reduce time required to obtain the results, i.e., the final particle size distribution of the product. Based on experiments shattering breakage mechanism was identified. A comparison of the mechanistic model and full CFD does not deviate from each other. Therefore the application of a much faster mechanistic model has comparable accuracy with full CFD. The model of particle deagglomeration does not predict a very fast initial drop of particle size, observed in the experiment, but it can predict, with acceptable accuracy, the final particle size of the product.
EN
Purpose: During the dialysis process, hemolysis is the most frequently occurring problem to solve. Titanium dioxide nanotubes (TNTs) can be considered as a material preventing hemodialysis or blood species deposition thanks to their unique properties, i.e., hydrophilicity, smooth surface, and antibacterial. The purpose of this work was the electrochemical, chemical, and morphological characteristics of the TNTs and the evaluation of the possibility of using them as filter parts in dialysis techniques. Methods: The tests were carried out on as-formed TNTs with a diameter of 50 ± 5 nm and 1000 ± 100 nm in height, and TNTs thermally modified in air atmosphere temperatures ranging from 350 to 550 °C. Electrochemical and microscopic analyses were performed both in the static and dynamic system of dialysis fluid (flow rate: 250 cm3/min). Additionally, deposition or damage of blood cells was specified during the ex vivo dialysis experiment. Results: Obtained results proved relationship between electrochemical properties of TNTs and the method of their modification. The results demonstrated that the TNTs annealed at 450 °C TNTs can be potentially applied for constructions dialysis membrane in the hemodialysis area due to their most stable stationary potential in dialysate, the highest value of impedance modulus, and the most favourable electrokinetic properties. Additionally, it was confirmed that annealed process causes improvement of corrosion resistance and protective properties for TNTs in the dialysis fluid. Conclusions: The result allowed for the conclusion that annealing is responsible for reduction of adsorption properties of TNTs, though this titanium dioxide nanotube still can be used as filter part in haemodialysis.
10
Content available remote Czarne chmury nad białym betonem
EN
This paper is devoted to the development of nano-modified cementing composites in the field of self-cleaning building materials. Particle-size distributions of the main constituents such as ultra-fine zeolite and limestone of multicomponent cements, and titanium dioxide and kaolin additives are given. The degree of the interphase of the active surface in Portland cement and supplementary cementitious materials is calculated. It has been shown that due to the synergistic effect, anatase and rutile mixtures can be included in cementing composites to improve the properties of self-cleaning plasters. The influence of titanium dioxide and kaolin additives on the mechanical properties of nano-modified multicomponent cement was investigated using the method of mathematical planning for the experiment. The results obtained using the XRD and SEM methods showed that the addition of high-surface-area nano-scale particles of TiO2 to the cement paste leads to the formation of a denser microstructure in the cementing matrix.
12
EN
Cross-link method has been used to load nano CeO2, ZnO, and TiO2 on the surface of cotton fabric. Three types of nanocomposite fabrics are prepared (cotton/CeO2, cotton/CeO2/ZnO, and cotton/CeO2/TiO2) and their properties were investigated. Field emission scanning electron microscopic (FESEM) images of the samples showed good distribution of nanomaterial, and energy dispersive X-ray spectroscopy (EDX) and X-ray fluorescence (XRF) samples proved the usage of amount of nanomaterials. On the other hand, elemental mapping was used to study the distribution of each nanomaterial separately. Antibacterial property of the samples showed excellent results against both Gram-negative and Gram-positive bacteria. Also ultraviolet (UV)-blocking of treated samples showed that all samples have very low transmission when exposed to UV irradiation.
EN
Purpose: The influence of UV radiation on the antibacterial properties of titanium oxide nanoparticles was examined using yeast Saccharomyces cerevisiae strain for this purpose. Design/methodology/approach: Nanopowders were made with sol-gel method. Surface morphology studies of the obtained materials were made using Zeiss's Supra 35 scanning electron microscope. In order to confirm the chemical composition of observed nanopowders, qualitative tests were performed by means of spectroscopy of scattered X-ray energy using the Energy Dispersive Spectrometer (EDS). The DLS (Dynamic Light Scattering) method was used to analyse the particle size distribution using the AntonPaar Litesizer 500 nanoparticle size analyser. Changes in particle size distribution at elevated temperatures were also observed. The antibacterial properties of titanium oxide nanoparticles were examined by subjecting the yeast sample to irradiation with an UV lamp. Findings: Samples containing yeast Saccharomyces cerevisiae were irradiated with and without the addition of TiO2 nanoparticles. A faster decrease in the colony count was observed compared to irradiated exposures without the addition of a suspension. Practical implications: Presented materials can be used in the production of antibacterial coatings for surfaces occurring in public spaces such as schools, hospitals, public toilets for the simple and effective elimination of bacteria and fungi as a result of exposures. Originality/value: The antibacterial properties of titanium oxide nanoparticles under UV radiation were confirmed.
EN
In this paper, electrochemical properties of the as-formed and thermally treated titanium dioxide (TiO2) nanotubes with diameter in the range of 20–100 nm and height in the range of 100–1000 nm were presented. In addition, the effects of annealing temperature (450–550 °C) on the electrochemical characteristics of these structures, as well as the influence of diameter and height of TiO2 nanotubes on these properties were examined. The results were referred to a compact TiO2 layer (100 nm thick). Methods: The electrochemical test included open circuit potential, impedance spectroscopy and cyclic voltammetry measurements. The scanning electron microscope with energy dispersive spectroscopy analyser, x-ray photoelectron spectroscopy, and x-ray diffraction analysers were used for surface morphology characterisation as well as elemental, phase and chemical composition of TiO2 layers. Results: It was found that nanotubes with the diameter of 50 and 75 nm (height of 1000 nm) annealed at 550 °C exhibit the lowest impedance and phase angle values. However, the voltammetric detection of potassium ferricyanide indicated that the closest to 1 Ipc /Ipa ratio were shown by nanotubes with a diameter of 50 and 75 nm annealed at 450 °C. Conclusions: On the basis of performed analysis, it can be stated that the TiO2 layer with nanotubes of 50 nm in diameter and of 1000 nm in height, annealed in 450 °C may be indicated as the ones having the most favourable sensing and biosensing properties.
PL
Adsorpcja to jeden z najistotniejszych procesów międzyfazowych zachodzących na powierzchniach substancji. Na podstawie pomiaru adsorpcji można określić właściwości sorpcyjne materiałów. Dokładne zbadanie właściwości sorpcyjnych pozwala na sprecyzowanie dalszego zastosowania danego materiału. Substancje o właściwościach sorpcyjnych znalazły szerokie zastosowanie w przemyśle chemicznym i elektroenergetycznym, w budowie maszyn i pojazdów, są także stosowane w ochronie środowiska naturalnego. W pracy przedstawiono badania właściwości sorpcyjnych materiałów na bazie TiO2, które można wykorzystać w procesach oczyszczania wody. Pomiary przeprowadzono metodą spektrofotometryczną; wykorzystano: spektroskopię w podczerwieni (IR), termograwimetrię (TGA), badania adsorpcyjne oraz metodę mikroskopową.
EN
Adsorption is one of the most important interfacial processes occurring on the surfaces of substances. Based on the adsorption measurement the sorption properties of the materials can be determined. A thorough examination of sorption properties allows to specify further use of a given material. Substances possessing sorption properties have found wide application in the chemical and power industry in the construction of machines and vehicles, and are also used in environmental protection. As part of this work, the sorption properties of TiO2 – based materials that could be used in water purification processes were investigated. The measurements were carried out by the spectrophotometric method, where infrared spectroscopy (IR), thermogravimetry (TGA), adsorption studies and microscopic method were used.
EN
The occurrence of contaminants of emerging concern (CECs) such as pharmaceutical compounds (PhACs) is becoming a major global issue due to the persistence, bioaccumulation, and toxicity of these pollutants. Human and animal consumption was recognized as the major sources for pharmaceutical pollution. Existent conventional treatment processes have shown low degradation efficiencies towards PhACs. In this regard, TiO2 based nanocomposite photocatalysis process has presented effective degradation towards PhACs. Operational parameters such as dopant content, catalyst loading, and initial pH were the major factors in the photocatalysis system. In this review, we discuss the recent studies that have employed TiO2 based nanocomposite for the degradation of PhACs. Future research recommendations have also been elaborated.
EN
Purpose: The article presents the results of research on titanium dioxide synthesized by a sol-gel method that is an easy process enabling the control of the shape and size of particles The purpose of this article is to examine titanium dioxide nanoparticles and thin films deposited by an atomization method. Design/methodology/approach: Titanium dioxide sol was synthesized by using titanium isopropoxide as a precursor. Optical properties were measured by a UV-Vis spectrometer. Structural studies were performed by Raman spectroscopy. Qualitative analysis was performed by the EDS. Surface morphology of nanoparticles and thin films was performed by the SEM technique. Findings: The sol-gel method allows the formation of uniform nanoparticles and thin films of titanium dioxide. The atomization method is a successful method for the deposition of sol to the surface of substrates. Research limitations/implications: The next step in the research will be to investigate the obtained thin films in dye-sensitized solar cells as a semiconductive layer. Practical implications: Unique properties of produced titanium dioxide nanostructural materials have caused the interest in them in such fields as optoelectronics, photovoltaics, medicine and decorative coatings. Originality/value: Titanium dioxide thin films and nanoparticles were synthesized using the sol-gel method and then deposited by the atomization method.
EN
Among the large family of metallic oxides, there is a considerable group possessing excellent semiconducting properties. What follows, they are promising materials for applications in the field of optoelectronics and photonics. Thanks to the development of nanotechnology in the last few decades, it is now possible to manufacture a great variety of different nanostructures. By controlling their size, shape, composition and crystallinity, one can influence such properties as band gap, absorption properties, surface to volume ratio, conductivity, and, as a consequence, tune the material for the chosen application. The following article reviews the research conducted in the field of application of the metallic oxide nanoparticles, especially ZnO, TiO2 and ITO (Indium-Tin Oxide), in such branches of optoelectronics as solid-state lightning, photodetectors, solar-cells and transparent conducting layers.
PL
Powłoki funkcjonalne nakładane na szkło modyfikują jego cechy lub nadają mu zupełnie nowe właściwości, zmieniając jednocześnie właściwości optyczne całego układu (warstwa/warstwy-podłoże). Interferencyjne kolorowe powłoki dekoracyjne typu TiO2/Ti/TiO2/szkło otrzymano z zastosowaniem magnetronu przemysłowego. Świetlne właściwości otrzymanych układów określono zgodnie z normą PN-EN 410. Wykazano, że zarówno grubości warstw TiO2, jak i Ti znacząco wpływają na parametry zdefiniowane w wyżej wymienionej normie.
EN
Functional coatings deposited on glass modify its features or give it completely new properties, simultaneously changing optical properties of the whole system (layer/layers-substrate). Interference decorative TiO2/Ti/TiO2/glass coatings were produced using magnetron sputtering technique at industrial conditions. Luminous properties of the obtained systems were determined according norm EN 410. Showed that thickness of both TiO2 and Ti significantly have an influence on parameters defined in the above mentioned norm.
EN
The aim of the study was to compare the removal efficiency of toxic heavy metal ions: chromium(VI), nickel(II) and copper(II) as well as metal-complex dyes from aqueous solution using Lewatite VPOC 1065 and AdsorbsiaTM As500. The point of zero charge (pHPZC) of both sorbents and the influence of the initial concentration on the sorption process of Ni(II), Cu(II), Cr(VI), C.I. Acid Red 183 (AR183), C.I. Reactive Blue 21 (RB21) and nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (NiPc-TSATSS) were studied to determine the maximum sorption capacity. Kinetic studies were also carried out for the most effective sorbent-sorbate systems. The concentration effect of both hydrochloric acid and auxiliaries on the removal yield was also taken into account. As was found, Lewatit VPOC 1065 can be successfully applied for the treatment of textile wastewaters containing metal complex dyes and heavy metal ions. The highest sorption capacity, qe = 816.1 mg/g, was found for C.I. Acid Red 183.
PL
Wśród zanieczyszczeń środowiska na szczególną uwagę zasługują metale ciężkie oraz metalobarwniki, które emitowane są do środowiska z różnych gałęzi przemysłu. Z uwagi na ich negatywny wpływ na organizmy żywe niezwykle istotnym jest ich usuwanie z wód i ścieków z wykorzystaniem różnych metod, wśród których adsorpcja odgrywa istotną rolę. Celem pracy było porównanie efektywności usuwania toksycznych jonów metali ciężkich: Cr(VI), Ni(II), Cu(II) oraz metalobarwników :C.I. Acid Red 183, C.I. Reactive Blue 21, soli tetrasodowej kompleksu nikluikwasu ftalocyjanino-tetrasulfonowego z roztworów wodnych z wykorzystaniem jonitu Lewatit VPOC 1065 oraz tlenku AdsorbsiaTM As500. Wyznaczono pHPZC obu sorbentów oraz zbadano wpływ stężenia początkowego na proces sorpcji badanych sorbatów oraz kinetykę procesu sorpcji dla najbardziej efektywnego układu sorbent-sorbat. W badaniach uwzględniono także wpływ stężenia kwasu chlorowodorowego oraz wpływ substancji pomocniczych na proces sorpcji.
first rewind previous Strona / 5 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.