Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dusty fluid
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The current work deals with two-phase flow and heat transfer induced by a mixture of fluid and dust particles revolving with a constant angular velocity above a slippage planar wall. Interaction of the solids with the fluid through an interaction force while rotating above the surface is formulated through a similarity system of equations akin to the Bödewadt flow in the absence of suspended particles. Although the velocity fields of fluid and solid are strictly coupled, the heat fields are decoupled from the velocity fields, but they are still in contact with each other due to the coupling of fluid and particle temperatures. The dusty fluid flow character is simulated numerically to capture the fluid and dust phase behaviors. The momentum and thermal layers are resolved in the presence of wall slip mechanism. Illustrative and quantitative results are eventually presented reflecting the physical features of particles and fluid at any stage of interaction during the rotary motion. It is revealed that the wall slip mechanism can be effective enough to alter the usual Bödewadt flow phenomenon.
EN
The aim of present work is to investigate the mass transfer of steady incompressible hydromagnetic fluid near the stagnation point with deferment of dust particles over a stretching surface. Most researchers tried to improve the mass transfer by inclusion of cross-diffusion or dust particles due to their vast applications in industrial processes, extrusion process, chemical processing, manufacturing of various types of liquid drinks and in various engineering treatments. To encourage the mass transport phenomena in this study we incorporated dust with microorganisms. Conservation of mass, momentum, concentration and density of microorganisms are used in relevant flow equations. The arising system of nonlinear partial differential equations is transformed into nonlinear ordinary differential equations. The numerical solutions are obtained by the Runge-Kutta based shooting technique and the local Sherwood number is computed for various values of the physical governing parameters (Lewis number, Peclet number, Eckert number). An important finding of present work is that larger values of these parameters encourage the mass transfer rate, and the motile organisms density profiles are augmented with the larger values of fluid particle interaction parameter with reference to bioconvection, bioconvection Lewis number, and dust particle concentration parameter..
EN
An unsteady two-dimensional stagnation-point mixed convection flow of a viscous, incompressible dusty fluid towards a vertical stretching sheet has been examined. The stretching velocity and the free stream velocity are assumed to vary linearly with the distance from the stagnation point. The problem is analyzed using similarity solutions. The similarity ordinary differential equations were then solved numerical by using the RKF-45 method. The effects of various physical parameters on the velocity profile and skin-friction coefficient are also discussed in this paper. Some important findings reported in this work reveal that the effect of radiation has a significant impact on controlling the rate of heat transfer in the boundary layer region.
EN
In the present study, the transient hydromagnetic flow between parallel porous plates of a dusty viscous, incompressible, electrically conducting fluid under the influence of a constant pressure gradient is studied, considering the ion slip. The parallel plates are assumed to be porous and subjected to uniform suction from above and injection from below, while the fluid is acted upon by an external uniform magnetic field applied perpendicular to the plates. The equations of motion are solved analytically to yield the velocity distributions for both the fluid and dust particles as functions of time and space.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.