Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dust holding capacity
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The development of an engine air filter is based on filter performance requirements, vehicle 's operational environment, available space, filter media properties, and production technology. The design process includes analyses of theoretical and empirical models describing filter media performance and aerosol flow in filter housings and through filter elements. Filter media are carefully selected based upon these models and simplified laboratory tests. The filter element design is evaluated in great detail through a series of laboratory and field experiments. The role of the engine air induction system has increased because of recent engine exhaust particulate and evaporative emission regulations. Engine lifetime, engine emission and fuel consumption depend on the air induction system design and its performance. Providing optimized solutions for these requirements dictates filter development trends. This drives the need for smaller, more compact filters and more efficient filter media with higher permeability. The efficiency can be drastically improved by applying a layer of nanofibers to a cellulose or synthetic substrate. The ISO fractional efficiency test method, that in its final stage of development, can clearly show the advantage of nanofiber filter media. This paper discusses air cleaner design including the newest in-line reduced volume air cleaners and the role of nanofiber filter media in engine air filtration.
EN
Although dust-holding capacity is the primary feature of engine air filters operating in dusty environments, efficiency becomes a major factor when selecting an engine air filter. Inertial separators and high porosity or fibrous prefilters are commonly used to decrease the dust load to the main filter while high efficiency is achieved by utilizing submicron or nanofiber fibers in the main filter. The patented multi-stage filter was designed to achieve ultra-high particle removal efficiency and dust holding capacity, and long life in dusty and on highway environments. The main (final) filter is located downstream of the prefilter. The main filter is made ofpleatedfilter media containing nanofibers with a diameter in the range of40 - 800 nanometers. The upstream in-line precleaner utilizing flow-through mini cyclones has separation efficiency of 95%. A high dust capacity, high efficiency prefilter can be used instead of the precleaner. The prefilter is made of vertically lapped nonwoven filter media made from synthetic fibers of different materials to fully utilize the tribological effect. The volume of the prefilter is determined by the performance required and space allotted. This paper discusses the filter performance of high dust holding capacity engine air filters. Filter specifications, design and performance are discussed in detail. Performance characteristics of the media and full size filters were determined using on-line particle counters and the gravimetric test method. Initial and final efficiency, and dust loading performance characteristics, are provided.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.