The dual-phase lag equation is formulated for the case when the thermophysical parameters occurring in this equation are temperature-dependent. The axial-symmetrical domain of biological tissue heated by an external heat source is considered. The problem is solved using the implicit scheme of the finite difference method. At the stage of numerical computations, the analytical relationships taken from the literature describing changes in parameters are taken into account.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The modeling of bioheat transfer process described by the dual-phase lag equation is considered. The basic equation is supplemented by the appropriate boundary-initial conditions. In the central part of the cylindrical domain the heated sub-domain is located. In this region the additional component determining the capacity of an internal heat source is taken into account. At the stage of numerical computations the generalized finite difference method (GFDM) is used. The GFDM nodes distribution is generated in a random way (with some limitations). The examples of computations for different nodes distribution and comparison with the classical finite difference method are presented. In the final part of the paper the conclusions are formulated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.