Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  drug loading
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years, the number of materials used as drug delivery systems (DDS) has increased dramatically. The widespread use of DDSs has improved both the safety and efficacy of therapy. The systems currently in use pose numerous drawbacks and require proper improvements. Although many modern materials are being developed, metal-organic frameworks (MOFs) deserve special attention. Thermal and chemical stability, high specific surface area, low toxicity, high biocompatibility, and great potential for modification are the main features enabling MOFs to be used as DDS. In this review, we describe MOFs, their structure, synthesis, and characterization, as well as drug loading, drug release kinetics, and bioassays. A critical approach is to outline the disadvantages as well as the limitations of MOFs and to identify areas that need to be studied more thoroughly. Nonetheless, the prospective nature of MOFs as DDS and potential adsorbents in overdose or poisoning is presented and highlighted.
EN
A newly proposed method for detecting content of adriamycin in pectin–adriamycin conjugate has been developed and evaluated. The content of adriamycin was detected by selective degradation of adramycin to adriamycinone. It was realized by a two-phase reaction system (water–chloroform reaction system), in which adriamycin was quantitatively converted to adriamycinone. Therefore, the latter can be used to calculate the precise content of adramycin in the polymer drug. To develop the method, the catalyst for degradation, the extraction solvent for adriamycinone, the temperature and time of degradation, and the ratio of pectin–adriamycin conjugate were investigated. The optimal reaction condition was as follows: 30 mg of pectin–adriamycin conjugate dissolved in 25 mL of water was added to a mixture of 25 mL of hydrochloric acid (1.5 mol/L) and 50 mL of chloroform; the mixture was heated to 40 °C to react for 1.5 h; after that, the mixture was extracted with chloroform for three times, and then the organic layer was combined and, subsequently, evaporated to remove solvent. Under this condition, adriamycinone generation rate reached 99.87%. The quantitative method was evaluated for linearity, the limit of detection (LOD) and limit of quantitation (LOQ), recovery, accuracy, robustness, and precision. The recoveries were between 99.47% and 101.07% with relative standard deviation <1.23%. The LOD and LOQ were 0.06 and 0.17 μg/mL, respectively. Compared to the traditional ultraviolet (UV) detection, this method is considered to be more precise for detecting content of adriamycin in its polymer conjugate.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.