In this article, we study the duals of homogeneous weighted sequence Besov spaces b α,q p,w, where the weight w is non-negative and locally integrable. In particular, when 0 < p < 1, we find a type of new sequence spaces which characterize the duals of b α,q p,w. Also, we find the necessary and sufficient conditions for the boundedness of diagonal matrices acting on homogeneous weighted sequence Besov spaces. Using these results, we give some applications to characterize the boundedness of Fourier-Haar multipliers and paraproduct operators. In this situation, we need to require that the weight w is an Ap weight.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.