Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dose calculation
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Introduction: In radiotherapy, a computerized treatment planning system (TPS) is used for performing treatment planning to estimate the dose distribution within a patient. To simplify the dose calculation, mathematical algorithms are employed. TG43 formalism is widely used for brachytherapy. Before the implementation of a particular dose calculation algorithm in clinical practice, it is imperative to acknowledge the limitations and uncertainties associated with the algorithm. Regarding this, outputs of the algorithm are compared to measurements or dose calculation approaches using simple source placement geometries. The manual dose calculation method has to be robust, straightforward, and devoid of complexities to reduce the likelihood of committing errors in the dose calculation process. A lot of manual dose calculation approaches have been proposed for Brachytherapy sources, but one needs to ascertain their reliability. Material and methods: Considering this, the output of an HDRplus treatment planning system dedicated to brachytherapy treatment planning and using the TG43 formalism to calculate the dose distribution around a BEBIG Co-60 source was validated with Sievert integral dose calculation approach. Simple source placement geometries were created with the TPS using the universal applicator, LLA1200-20, selected from the applicator library, and doses at various equidistant points from the applicator calculated with the TPS and the Sievert integral. Various steps to enhance the efficacy of the Sievert integral approach have been outlined. Results: The doses compared favourably well with deviations ranging from 0.03 – 10.51% (mean of 3.13%), and 0.03 – 5.63% (mean of 2.55%) for angles along the perpendicular bisector of the source, ranging from 0° < θ < 70° and 0° < θ < 48°, respectively. Conclusions: The Sievert integral breaks down at angles: θ ≥ 60°, and therefore, neglecting large angles, the Sievert integral would be an efficient, effective, and valid tool for quality control of the HDRplus TPS for the Co-60 source.
EN
The purpose of the study was to investigate the dependence of tissue inhomogeneity correction factors (ICFs) on the photon beam quality index (QI). Materials and Methods: Heterogeneous phantoms, comprising semi-infinite slabs of the lung (0.10, 0.20, 0.26 and 0.30 g/cm3), adipose tissue (0.92 g/cm3) and bone (1.85 g/cm3) in water, were constructed in the Eclipse treatment planning system. Several calculation models of 6 MV and 15 MV photon beams for quality index (TPR20,10) = 0.670±k*0.01 and TPR20,10 = 0.760±k*0.01, k = -3, -2, -1, 0, 1, 2, 3 respectively were built in the Eclipse. The ICFs were calculated with the anisotropic analytical algorithm (AAA) for several beam sizes and points lying at several depths inside of and below inhomogeneities of different thicknesses. Results: The ICFs increased for lung and adipose tissues with increasing beam quality (TPR20,10), while decreased for bone. Calculations with AAA predict that the maximum difference in ICFs of 1.0% and 2.5% for adipose and bone tissues, respectively. For lung tissue, changes of ICFs of a maximum of 9.2% (6 MV) and 13.8% (15 MV). For points where charged particle equilibrium exists, a linear dependence of ICFs on TPR20,10 was observed. If CPE doesn’t exist, the dependence became more complex. For points inside of the low-density inhomogeneity, the dependence of the ICFs on energy was not linear but the changes of ICFs were smaller than 3.0%. Measurements results carried out with the CIRS phantom were consistent with the calculation results. Conclusions: A negligible dependence of the ICFs on energy was found for adipose and bone tissue. For lung tissue, in the CPE region, the dependence of ICFs on different beam quality indexes with the same nominal energy may not be neglected, however, this dependence was linear. Where there is no CPE, the dependence of the ICFs on energy was more complicated.
EN
Introduction: Commissioning of the treatment-planning system includes the accuracy of dose calculations in the inhomogeneous absorber. Several results of measurements with regard to inhomogeneity correction factors (CFs) have been published. However, the dependence of CFs on photon-beam energy may preclude such results from being applied to the photon beams of general users. Purpose: The aim of this study was to assess the dependence of CFs on the photon-beam energy. Materials and methods: CFs were calculated by the Batho method for several slab geometries comprised of concentrations of lung tissue and water of 0.25 and 1.00 g/cm3, respectively. The CFs were calculated at 6 MV (TPR10 = 0.67 ± k * 0.01) and 15 MV (TPR10 = 0.76 ± k * 0.01) where k = –3, –2, –1, 0, 1, 2, 3. All calculations were performed in the region where a charged-particle equilibrium exists. Results: Changes in CFs of less than 2% were observed across the considered energy ranges. With a change in TPR20,10 of 0.01, both at 6 and 15 MV at a depth of 5 cm below the lung; and lung thicknesses of 3, 5 and 8 cm over a fi eld surface area of 10 × 10 cm2, the change in CF never exceeded 2.4%. The dependences of changes in CFs in terms of TPR20,10 were 1.74% and 1.20% for fi eld surface areas of 5 × 5 cm2 and 20 × 20 cm2, respectively. A comparison of 42 linear accelerators (LINACs) exhibiting 6 MV and 15 MV of energy installed in Poland showed that the maximum differences in terms of TPR20,10 at 6 MV and 15 MV were 4.2% and 2.2%, respectively. Conclusion: A linear dependence of CFs on energy was observed. According to observations, the smaller the surface area of the fi eld and deeper the point of interest below the lung, the more dependent CFs are on energy.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.