Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dopasowanie zdjęć
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W codziennej praktyce teledetekcyjnej wielokrotnie zachodzi potrzeba dopasowania zdjęć ”piksel w piksel”. Jest to szczególnie ważne gdy wykonujemy równoczesną klasyfikację kilku zdjęć lub analizy porównawcze, których najlepszym przykładem jest detekcja zmian. Dopasowanie zdjęć satelitarnych, lotniczych, czy też innych danych obrazowych uzyskanych w wyniku skanowania, wykonywane jest najczęściej ręcznie na podstawie określanych przez operatora punktów. W Centrum Badań Kosmicznych PAN w Zespole Obserwacji Ziemi opracowano automatyczną metodę dopasowywania dwóch zdjęć, która działa w postaci niezależnego oprogramowania. W celu wyznaczenia punktów dopasowania na zdjęciu wejściowym i referencyjnym wykonywana jest detekcja krawędzi algorytmem Canny’ego. Następnie znajdowane są linie proste. Przecięcia ich tworzą punkty charakterystyczne, spośród których na obu zdjęciach wybierane są pary odpowiadających sobie punktów dopasowania. Muszą one spełniać określone warunki. Znalezione pary odpowiadających sobie punktów służą wyznaczeniu parametrów macierzy transformacji, na podstawie której wykonywana jest korekcja geometryczna. Zaproponowane podejście charakteryzuje się wysoką dokładnością wyników. Implementację metody wzbogaconą o graficzny interfejs użytkownika udostępniono w postaci oprogramowania matSIM. Jest ono rozpowszechniane na licencji freeware, dzięki czemu może być powszechnie wykorzystywane.
EN
Image geometrization is one of the basic processes in satellite image processing. As a result of the transformations performed, georeference is attached to the image becoming a cartometric image. Depending of the used algorithm, the referencing material can be a map, other image, a vectorial data base, control points interactively determined by an operator or RPC points (Rational Polynomial Coefficient). In everyday practice working with remote sensing means that we work more often with after orthorectification data, realized by image supplier. Despite this, “pixel to pixel” matching is still frequently needed. This is particularly important when we perform simultaneous classification of various images or comparing analyses, for example, detecting change. Image matching of satellite, aerial or other imaging data originated from scanning, is commonly hand made based on marked points by an operator. This is not a difficult process, however time-consuming and often troublesome. Some of the commercial software applications offer functionalities that do this process automatically, but frequently appear in additional paid modules. At the Space Research Centre in Earth Observation Group we have developed an automated image matching method that works integrated in a created stand-alone software. Matching points at reference and input image are marked automatically. To this end, edge detection is performed on the image using Canny’s algorithm. After this, straight lines are identified and on the intersection points between these lines, characteristic image points are created. From these points both images will select corresponding pairs of points to be matched. The points selected for this task must fulfill three conditions. Firstly, maximal and minimal distance between the points must be kept within the defined threshold values. Secondly, the angle between intersected segments that define a matching point must be similar. And at lastly, the correlation coefficient indicating pixel value defined at the surrounding point zone must be the same, allowing a predetermined margin over the defined threshold value. Using the matching points obtained during this process, the parameters of the transformation matrix are obtained, being those parameters the base for geometric image correction. The purposed method is characterized by high accuracy of its results. The firsts tests were performed using Matlab development environment and then, taking in mind the increasing need of high speed performance, the algorithm was adapted to work using C\C++ libraries. Based on this algorithm, we have developed and implemented the software application matSIM. We have released this application under a freeware license and can be commonly used. The user friendly graphic interface improves the usability and facilitates image visualization and selection of used regions of interest where matching points will be searched. Additionally, the application allows changing default parameters such as transformation method used (lineal, bilinear, quadratic) and resampling type (nearest neighbor, bilinear).The input and output data format is GeoTIFF.
PL
Celem niniejszego referatu jest przeanalizowanie działania wybranych algorytmów, które automatycznie obliczą elementy orientacji zewnętrznej sieci zdjęć a następnie wyznaczą współrzędne chmury punktów 3D, opisujących model badanego obiektu. Do obliczeń wykorzystano autorski program, realizujący kolejne etapy tworzenia modelu 3D. Pierwsza faza obejmowała wyróżnienie na poszczególnych zdjęciach elementów charakterystycznych, gdzie wykorzystane zostały operatory detekcji narożników SIFT i SUSAN. Następnym krokiem było połączenie punktów homologicznych na sąsiednich zdjęciach. Sposób realizacji tego kroku jest determinowany przez wybór typu operatora. Operator SIFT posiada dedykowany mechanizm tworzenia par, podczas gdy operator SUSAN wymaga utworzenia odrębnych metod. Do dopasowania punktów wykorzystano metodę Area Base Matching, zmodyfikowaną na potrzeby modelowania 3D. Na podstawie tak zebranych danych, kolejnym etapem jest wyznaczenie współrzędnych 3D chmury punktów mierzonego obiektu. W niniejszym referacie przedstawiono dwa rozwiązania. Jedno z nich realizuje dopasowywanie zdjęć parami, korzystając z macierzy podstawowej a drugie trójkami, wykorzystując rachunek tensorowy. W praktyce, pierwsze rozwiązanie wyznaczające punkty modelu okazało się mniej stabilne numerycznie, co może prowadzić do znacznych błędów w modelu końcowym. Drugie rozwiązanie jest trudniejsze do wykorzystania, gdyż wymaga odnalezienia odpowiadających sobie punktów na co najmniej trzech zdjęciach. Eksperymenty przeprowadzono na wybranych obiektach bliskiego zasięgu, z odpowiednio wykonaną geometrią zdjęć, tworzących pierścień (okrąg) wokół mierzonego obiektu.
EN
The objective of this paper is to analyse operations of selected algorithms, which will automatically compute elements of external orientation of a network of photographs and then, they will determine co-ordinates of a 3D cloud of points, which describe a model of the analysed object. The author’s software tool has been utilised for calculations; it performs successive stages of the 3D model generation: detection of characteristic points, point matching on successive photographs, determination of a tensor, calibration and 3D point cloud generation. A series of experiments have been performed in order to evaluate selection of the optimum solution. The first stage included distinguishing of characteristic elements on particular photographs; corner detection operators, SIFT and SUSAN were applied for that stage. The next step concerned connection of homological points on neighbouring photographs. The method of implementation of that step is determined by selection of the operator type. The SIFT operator has the dedicated mechanism of pair creation, whilst the SUSAN operator requires creation of separate methods. The Area Base Matching method, modified according to the demands of 3D modelling, was used for the needs of point matching. This method investigates correlation of the background within the neighbourhood of characteristic points and uses the results of that investigations to match the photographs. Basing on data collected this way, the next stage aims at determination of 3D co-ordinates of the cloud of points of the measured object. Two solutions have been presented in this paper. One of them allows for matching photographs in pairs, using the fundamental matrix; the second solution allows for threesome matching of photographs, using the tensor calculus. In practice, the first solution, which determines the model points, turned to be less numerically stable, what may lead to considerable errors of the final model. The second solution is more difficult to use, since it requires that corresponding points are found in at least three photographs. Experiments were performed for selected close range objects, with the appropriate specified geometry of photographs, which created a ring around the measured object.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.