Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dissolution kinetics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Clay is widely used in a number of industries due to its special properties like fine particle size, brightness and whiteness, chemical inertness, platy structure, etc. In this study, the general characteristics of clays have been investigated by XRF, XRD, FT-IR, TG-DTA and SEM. The presence of iron as an impurity decreases its commercial value due to giving unwanted colors to clay mineral. Therefore, the dissolution capacity of clay ore was investigated by oxalic acid leaching. Under optimized leaching conditions (0.8 M oxalic acid concentration, 85°C reaction temperature, 1.75 ambient pH, 106+75 µm particle size, 15% w/v solids concentration and 150 min. leaching time) with 250 rpm stirring, 83.90% of Fe2O3 was removed. The amount of iron oxide, the main impurity in the clay, has been reduced from 2.70 to 0.40%. The iron dissolution kinetics was mainly controlled by internal diffusion control of shrinking core model and activation energy, Ea, of 26.29 kJ/mol was obtained for the process. The results also showed that the studied clays have adequate characteristics for ceramics industry, earthenware and porcelain production.
EN
Dissolution kinetics of digenite (Cu9S5) was studied in Fe3+-H2SO4-NaCl media. The temperature range for the study was between 297 and 373 K (24 and 100°C), with a ferric concentration between 0.0100 and 0.0806 mol/dm3, a sulfuric acid concentration of 0.05 to 1.5 mol/dm3 and a NaCl concentration of 1.5 to 5 mol/dm3. Agitation speed and particle size were also studied. Results indicate that the dissolution mechanisms of digenite occurs in two stages: i) generation of covellite (CuS) with the formation of cupric ion (Cu2+) and ii) dissolution of covellite (CuS) with copper production in the system, as well as amorphous sulfur (S°). The second stage occurred very slowly compared to the first stage, the above variables studied directly affected the second stage. Temperature, Fe3+ and H2SO4 concentration positively affected dissolution of covellite formed (second stage), while the presence of NaCl did not increase dissolution of Cu9S5 or CuS. Results showed that stirring speed had an important role in the dissolution rate of CuS. Dissolution kinetics was analyzed using the model of diffusion through the porous layer. Covellite dissolution reaction order was 2.3 and 0.2 with respect to the concentration of ferric and sulfuric acid, respectively, and the rate was inversely proportional to particle size. The calculated activation energy was 36.1 kJ/mol, which is a typical value for a reaction controlled by diffusion in the porous layer at temperature between 297 and 373 K (24 and 100°C).
EN
Process improvement and kinetic study on copper leaching from low-grade cuprite ores in sulfuric acid solution are presented in this paper. Effects of major leaching parameters on copper leaching efficiency are determined. The results indicate that copper minerals in the raw ores are mainly cuprites. The reaction rate of this ore increases with an increase in temperature, reaction time, sulfuric acid concentrations and decrease in the particle size of ore. Leaching of about 92.5% of copper is achieved using 0.125-0.074 mm ore particle size at a reaction temperature of 353 K for 180 min reaction time with 150 g/dm3 sulfuric acid. The solid/liquid ratio was maintained constant at 1:15. Leaching kinetic indicates experimental data complies with shrinking core mode (SCM). It is found in the study that agitation rate is not an influential factor on leaching rate and that the dissolution rate is controlled by surface chemical reaction. The average activation energy of the process is determined to be 45.28 kJ mol-1, and the reaction order of H2SO4 is 0.8093.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.