Let X be the unique solution started from x0 of the stochastic differential equation dXt= θ(t;Xt)dBt +b(t;Xt)dt with B a standard Brownian motion. We consider an approximation of the volatility θ(t;Xt), the drift being considered as a nuisance parameter. The approximation is based on a discrete time observation of X and we study its rate of convergence as a process. A goodness-of-fit test is also constructed.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.