Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  discrete differential operator
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the improved methodology for the direct calculation of steady-state periodic solutions for electromagnetic devices, as described by nonlinear differential equations, in the time domain. A novel differential operator is developed for periodic functions and the iterative algorithm determining periodic steady-state solutions in a selected set of time instants is identified. Its application to steady-state analysis is verified by an elementary example. The modified algorithm reduces the complexity of steady-state analysis, particularly for electromagnetic devices described by high-dimensional nonlinear differential equations.
EN
This paper investigates an algorithm for finding steady-states in electromechanical systems for the cases of their periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain. The basis for such an algorithm is a discrete differential operator that specifies the values of the first derivative of the periodic function in the selected set of points on the basis of the values of that function in the same set of points. It creates algebraic equations describing the steady-state solution for the nonlinear differential equations describing electromechanical systems. In this paper, the direct time-domain approach is tested for the simple converter considering. The algorithm used in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.
EN
This paper describes an algorithm for finding steady states in AC machines for the cases of their two-periodic nature. The algorithm enables to specify the steady-state solution identified directly in time domain despite of the fact that two-periodic waveforms are not repeated in any finite time interval. The basis for such an algorithm is a discrete differential operator that specifies the temporary values of the derivative of the twoperiodic function in the selected set of points on the basis of the values of that function in the same set of points. It allows to develop algebraic equations defining the steady state solution reached in a chosen point set for the nonlinear differential equations describing the AC machines when electrical and mechanical equations should be solved together. That set of those values allows determining the steady state solution at any time instant up to infinity. The algorithm described in this paper is competitive with respect to the one known in literature an approach based on the harmonic balance method operated in frequency domain.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.