Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  differential settlement
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The article presents problem of non-uniform foundation of structures in weak wet subsoil. The problem is illustrated with the case study of two-chamber-reinforced concrete water tank constructed in 1920s of 20th century, which cracked during construction. Under part of foundation, where the peat was found, the concrete piles were introduced. The results of five-year measurement of crack widths with crack gauges and geodesic measurements of vertical displacement of tank were presented. These results indicate that the tank is not stable and part of broken tank supported on piles is movable. On the basis of the presented data, the general conclusions concerning the non-uniform founding of tanks are formulated.
EN
This work presents the geotechnical problems occurring in the interaction area between road embankments and the bridge structures in case a subsoil characterised by complex and complicated geological and engineering conditions. These significant problems that occur during the design, performance and exploitation of the abutment structures, are illustrated on the example of engineering practice in Lower Silesia, concerning a road embankment that constitutes access to the bridge. The results of numerical analyses concerning the process of consolidation of low-strength soils and their impact on the settlements of road embankment indicate the need to carry out such analyses also in the cases, when the soft soils occur in the direct geotechnical layer under the designed embankment. The Authors included in this article a discussion regarding other effective actions and solutions that can be used in the design and performance phase, leading to the elimination or reduction of problems concerning the connection of engineering structures with road embankments, which have been recurring for years, ultimately resulting in the improvement of quality, comfort and safety of road exploitation.
EN
The conventional design of building frames is based on the assumption that the settlement of footings has no effect on the load of the corresponding columns. In reality, the differential settlements among various footings result in a redistribution of the column loads, the amount of which depends on the rigidity of the structure and the load-settlement characteristics of the soil. The present paper attempts to study the effect of the same on design force quantities for frame members of building frames with isolated footings. The nonlinear settlement versus stress relationship arising in case of building frames with isolated footings on clayey soils is attempted to be dealt with two alternative iterative approaches. Results of a few simple three-dimensional frames obtained by the simpler approach are compared with the results of the more rigorous approach and found to be satisfactory. Frames resting on sandy soil are also studied by idealising the soil medium below the footing as linear elastic springs. Various representative case studies are presented for frames resting on sandy and clayey soil. These case studies may help in arriving at design provisions to account for such effects. The simpler iterative approach may be exercised with the help of available commercial frame analysis software and may prove useful in improved design of buildings accounting for the effect of soil-structure interaction. Adequacy of providing tie beams, continuous lintels, and diagonal braces in minimising the redistribution of force quantities are also studied and presented in the paper in limited form. The addition of diagonal braces are found to be effective in substantially minimising the change in force quantities due to the soil-structure interaction.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.