Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  diagnostyka procesu spalania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Evaluating combustion quality using sensors that allow continuous assessment of the process is one of the modern methods of engine sensory diagnostics. The proper calibration of such systems is a task that requires many studies to determine the conditions and quantities affecting the process. The analysis of significance of quantities related to the ionization signal was carried out in the article. The magnitude of the voltage generating the electric field, the type of spark plug used, the distance of the spark plug electrodes and the dynamic factor - spark plug operating temperature - were all tested. The tests were carried out using a CNG burner (with an excess air ratio of λ = 1) and four spark plugs. As a result of the ionization signal research, the following relationships were obtained: regarding the impact of the sensor position on the amount of generated voltage (the smaller the distance the greater the value of the signal), the effect of temperature on the sensor resistance (non-linear relationship: increase in temperature decreases resistance, with R2 = 0.9997) effect of system voltage on the ionization signal (linear relationship: voltage increase increases the ionization current signal with a determination coefficient of R2 = 0.9803). In addition, it was found that using an iridium electrode candle had the best effects on the ionization current, regardless of the electrode’s geometrical parameters.
EN
The combustion process quality is determined by several factors: the composition of the fuel-air mixture in the vicinity of the spark plug and the discharge conditions on the spark plug. This article assesses a high-power ignition system using optical gas flame propagation analyzes. The tests were carried out in a rapid compression machine, using a fast camera for filming. The spark plug discharge quality assessment was determined indirectly by the flame propagation conditions after the ignition of the mixture (during methane combustion). The size of the flame surface and the rate of its change were assumed as a comparative criterion. It has been found that when using an ignition system with high discharge power the rate of flame development is 14% higher with respect to conventional ignition systems. In addition, the shorter development time of the early flame phase after discharge when using the new ignition system was confirmed. Based on the obtained test results and analyzes, modifications of engine operation settings were indicated, resulting from the use of a high discharge power system.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.