The paper describes an EMG signal analysis based on the wavelet transform, applied for the hand prosthesis control. Signal features are represented by wavelet coefficients. A cross-validation method is applied for the feature selection process. The classification algorithm uses multistage recognition. The information about finger posture provided by a data glove is recorded concurrently with forearm EMG signals. The acquired data are used to train the classification algorithm.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.