Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  detonability
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper presents the authors’ experience in the field of the safe preparation and utilisation of HTP (98%+), a storable propellant that is finding use in various engineering applications. Brief characterisations of the material as well as examples of its potential use within relevant industries are provided. Additionally, some of the existing data and current research are included to demonstrate the full potential of this material which meets most of the needs of the propulsion industry. The laboratory technique for obtaining the substance that has been developed recently at the Institute of Aviation is briefly described. Utilisation of the method based on a special glass apparatus allows reproducible amounts of the substance to be obtained with relatively little risk.
EN
The detonation propensity of hydrogen-air mixtures with addition of methane, ethane or propane in wide range of compositions is analyzed. The analysis concerned the detonation cell width, ignition delay time, RSB and χ parameters. Results are presented as a function of hydrogen molar fraction. Computations were performed with the use of three Cantera 2.1.1. scripts in the Matlab R2010b environment. The validated mechanisms of chemical reactions based on data available in the literature were used. Six mechanisms were assessed: GRI-Mech 3.0, LLNL, SanDiego, Wang, POLIMI and AramcoMech. In conclusion, the relation between detonation propensity parameters is discussed.
EN
Quantities of improvised explosive devices on a base of industrial explosives that were applied at criminal incidents or were withdrawn from illegal circulation were reduced on average on 9% during last decade. This tendency is explained in particular by toughening of control under circulation of commercial explosive devices. The most commonly used improvised explosives according to returns of The Forensic Science Center of Ministry of Internal Affairs are mixtures on a base of ammonium nitrate with organic fuels and aluminum powder. Quantitative and qualitative compositions of such improvised mixtures can be various. The most essential question for a criminal case investigator is argument that excepted substance is explosive one. In this connection detonability of the mixtures on base fne (particle size was near 20 microns) and granulated ammonium nitrate with some organic fuels and aluminum powder was experimentally investigated. Failure detonation diameters of systems were measured experimentally.
EN
There are great number tasks of explosive technique, requiring the charges with low pressure and detonation velocity. Powerful tool of regulation of these parameters is lowering of charge density. The main goal of this work is elaboration of technology of manufacture and investigation of explosive properties of charges on a base of eutectic ammonium nitrate-urea mixtures (AN/UR) that have melting point T[m] < 100 C. The physicochemical properties of these mixtures were investigated by means of DSC method and fusion diagram of them was plotted. The composition AN/UR 80/20, that has Tm= 80-90 C was chosen for subsequent investigation. The molten composition was mixed with fine aluminum powder, portion of it was placed into paper tube. The level of a liquid was less than length of the tube. Crystallization of melted mixtures was carried out in vacuum chamber, the level of liquid increased at pumping because of expansion of air bubbles introduced with aluminum particles and reached the upper cork of tube. In such a way porous charges were formed. The dependence of charge density vs. population of tubes by melted mixtures was plotted. Calculated heat explosion of mixtures at content of aluminum Al = 10-15% is Qv = 4.5-5.3 MJ/kg, calculated detonation velocity at density ρ = 0.5-1 g/cm3 changes from D = 3.2 to 5.2 km/s. Detonability of charges was investigated experimentally. Failure diameter (df) of detonation was measured, it was df = 22 mm (ρ = 0.6-0.7 g/cm3) for charges without confinement at initiation by means of booster or blasting cap.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.