Ograniczanie wyników
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  deterministyczne automaty komórkowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In recent years wind energy is the fastest growing branch of the power generation industry. The largest cost for the wind turbine is its maintenance. A common technique to decrease this cost is a remote monitoring based on vibration analysis. Growing number of monitored turbines requires an automated way of support for diagnostic experts. As full fault detection and identification is still a very challenging task, it is necessary to prepare an early-warning tool, which would focus the attention on cases which are potentially dangerous. There were several attempts to develop such tools, in most cases based on various classification methods. The techniques that have been used so far are based on the vibration signals analysis in which the signals are considered as time series. However such approach has crucial limitations. Therefore, new approaches for wind turbines intelligent monitoring are worked out. Artificial intelligence systems are ones of promising. In this paper such approach is proposed - a vibration signal spectrum is considered as a pixel matrix which is processed using deterministic cellular automaton (DCA). It turns out that such processing allows us to detect pre-failure states.
PL
W ostatnich latach energetyka wiatrowa jest najszybciej rozwijającą się gałęzią przemysłu energetycznego. Najkosztowniejsza w turbinach wiatrowych jest ich konserwacja. Popularną techniką obniżającą te koszta jest zdalny monitoring bazujący za analizie wibracyjnej. Rosnąca liczba monitorowanych turbin zmusza do znalezienia automatycznego wsparcia dla diagnozujących ekspertów. Ponieważ pełna detekcja i identyfikacja uszkodzeń jest wciąż wielkim wyzwaniem, potrzebne jest określenie narzędzia zdolnego wychwytywać jak najwcześniejsze symptomy awarii. Podejmowane były próby stworzenia takich narzędzi, opierając się na różnych metodach klasyfikacji. Używane techniki od dłuższego czasu bazują na analizie sygnałów wibracyjnych, które rozpatrywane są jako szeregi czasowe. Takie podejście, jednakże, ma istotne ograniczenia. Dlatego też poszukuje się nowych metod, które mogą być skutecznie użyte do inteligentnego monitoringu turbin wiatrowych. Systemy sztucznej inteligencji wydają się być obiecującym podejściem. W niniejszej publikacji testowana jest użyteczność tego podejścia - badane widmo sygnału wibracyjnego jest rozumiane jako macierz komórek, które konstytuują automat komórkowy. Przetwarzanie sygnałów przy pomocy powyższego automatu pozwoli wykrywać stany przedawaryjne.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.