Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  detektor ruchomego celu
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Radar Target Detection (RTD) is a critical aspect of modern radar systems that have widespread use in both civil and military fields. However, detecting targets in clutter and unfavorable conditions is challenging with conventional signal processing approaches such as Constant False Alarm Rate (CFAR). The harsh and complex environments in radar measurements make the target detection problem even more challenging when using traditional methods. Therefore, developing a reliable and robust RTD technique is crucial. This paper proposes an approach that incorporates Machine Learning (ML) with conventional methods to detect, separate, and classify real targets from noisy backgrounds in a real radar dataset by employing Fuzzy C-means (FCM) clustering to segment the Range Doppler Map (RDM) image into targets and background, then a feature extraction technique based on gray-level co-occurrence matrix (GLCM) and classify the targets using a support vector machine (SVM). The approach is based on an augmented Doppler Filter Bank (DFB) with RDM images and has been tested on a Frequency Modulated Continuous Wave (FMCW) radar mounted on an Unmanned Aerial Vehicle (UAV) for detecting ground targets. A flight was conducted in a challenging environment to evaluate the proposed system's performance. The experimental results demonstrate that the proposed approach outperforms existing methods in terms of classification accuracy. The proposed approach is also computationally efficient and can be easily implemented in real time systems and has great potential in improving RTD performance in various applications.
PL
Radarowe wykrywanie celów (RTD) to krytyczny aspekt nowoczesnych systemów radarowych, które są szeroko stosowane zarówno w zastosowaniach cywilnych, jak i wojskowych. Jednak wykrywanie celów w bałaganie i niesprzyjających warunkach jest trudne przy konwencjonalnych metodach przetwarzania sygnału, takich jak stała częstość fałszywych alarmów (CFAR). Trudne i złożone środowiska w pomiarach radarowych sprawiają, że problem wykrywania celu staje się jeszcze większym wyzwaniem przy użyciu tradycyjnych metod. Dlatego kluczowe znaczenie ma opracowanie niezawodnej i solidnej techniki BRT. W tym artykule zaproponowano podejście, które łączy uczenie maszynowe (ML) z konwencjonalnymi metodami wykrywania, oddzielania i klasyfikowania rzeczywistych celów z hałaśliwego tła w prawdziwym zbiorze danych radarowych poprzez zastosowanie klastrowania rozmytych średnich C (FCM) w celu segmentacji mapy Range Doppler (RDM) ) na cele i tło, a następnie technikę ekstrakcji cech opartą na macierzy współwystępowania na poziomie szarości (GLCM) i klasyfikować cele za pomocą maszyny wektorów nośnych (SVM). Podejście to opiera się na rozszerzonym banku filtrów dopplerowskich (DFB) z obrazami RDM i zostało przetestowane na radarze fali ciągłej z modulacją częstotliwości (FMCW) zamontowanym na bezzałogowym statku powietrznym (UAV) w celu wykrywania celów naziemnych. Przeprowadzono lot w trudnym środowisku, aby ocenić wydajność proponowanego systemu. Wyniki eksperymentów pokazują, że proponowane podejście przewyższa istniejące metody pod względem dokładności klasyfikacji. Proponowane podejście jest również wydajne obliczeniowo i może być łatwo zaimplementowane w systemach czasu rzeczywistego oraz ma ogromny potencjał w zakresie poprawy wydajności RTD w różnych zastosowaniach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.