Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dental restorative material
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: The aim of the presented work was to investigate the impact of the S-P introduction into resin-based composites on their effectiveness against Enterococcus faecalis (E. faecalis). Design/methodology/approach: Seven experimental composites based on typical matrix were developed. Six of them contained a filler with antimicrobial properties (silver sodium hydrogen zirconium phosphate, S-P), while the control material contained only common reinforcement fillers. The materials were characterized in terms of the dispersion of the extender in the matrix and then subjected to microbiological tests. The efficiency in the reduction of E. faecalis in the microenvironment was tested. Findings: The composites show a satisfactory distribution of fillers and a high initial reduction of bacteria colonies for the tested strain of E. faecalis. The reduction in bacteria colonies achieved for S-P concentrations from 7% to 13% was similar (median value from 99.8 to 99.9%, when for control material and compound with 1% S-P the number of colonies increased compared to positive control. Research limitations/implications: Laboratory test results may differ from in vivo test performance. In addition, there are many models for conducting laboratory antimicrobial efficacy studies, the results of which are also varied. The cytotoxic tests, long-term investigations and in vivo experiments need to be performed in future experiments. Practical implications: E. faecalis is a Gram-positive bacterium that is commonly detected in persistent endodontic infections and may enter the root canal through the coronal part. Development of composites with antimicrobial properties against this bacterium is as important as obtaining efficacy against cariogenic bacteria. Originality/value: The antimicrobial effectiveness against E. faecalis of experimental composites with submicrometer-sized particles of S-P was not investigated until now.
EN
Purpose: of this study was to evaluate the influence of LCU type on temperature changes during polymerization of two resin-based composites with different matrices (silorane-based and methacrylate-based). Design/methodology/approach: The light-curing units (LCUs) selected for this study included three various LEDs (LED 55, LED 10W and Radii Plus) and a QTH (Elipar Highlight). Two different resin-based composites (RBCs) were used in this study. The silorane-based composite Filtek Silorane and methacrylate-based composite Filtek P60. Temperature changes were measured during polymerization with LCUs working in various curing modes. Empty mold, Filtek Silorane RBC and Filtek P60 RBC were cured from a distance of 0 mm, 2.5 mm and 5 mm. Findings: Regardless the type of RBC, every time the highest temperature was reached with LED 55 light-curing unit. Comparing Filtek Silorane and Filtek P60 RBCs, the temperature of Filtek Silorane RBC was significantly higher with LED 55 (35.4±4.9), Radii Plus (33.5±5.5) and Elipar Highlight LCUs (31.2±3.1), and significantly lower with LED 10W LCU (28.5±7.5). For Filtek P60 the measured temperatures of polymerization were 32.7±3.2 for LED 55 LCU, 29.9±5.6 for LED 10W LCU, 31.0±2.4 for RadiiPlus LCU and 30.2±1.8 for Elipar Highlight LCU. Research limitations/implications: The research was carried out for two groups of composite materials used for teeth restoration in modern dentistry. The experiment should be repeated on a broader group of resin-based composite dental materials and should take into account more light-curing units. The study could be also done in situ on a real tooth model. Practical implications: This research gives an insight into the range of temperatures that are generated during polymerization process of dental composite materials. The results of the study are of a great value during choosing the restorative composite material for particular application in the oral cavity, selecting the right light-curing-unit and adjusting the curing parameters Originality/value: The results of the study allow to conclude that the temperature values vary for each resin-based material, according to light-curing-unit type and the distance of curing seemed to have least influence on temperature changes during polymerization.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.