Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  density based spatial clustering
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this digital age large amounts of information, images and videos can be found in the web repositories which accumulate this information. These repositories include personal, historic, cultural, and business event images. Image mining is a limited field in research where most techniques look at processing images instead of mining. Very limited tools are found for mining these images, specifically 3D (Three Dimensional) images. Open source image datasets are not structured making it difficult for query based retrievals. Techniques extracting visual features from these datasets result in low precision values as images lack proper descriptions or numerous samples exist for the same image or images are in 3D. This work proposes an extraction scheme for retrieving cultural artefact based on voxel descriptors. Image anomalies are eliminated with a new clustering technique and the 3D images are used for reconstructing cultural artefact objects. Corresponding cultural 3D images are grouped for a 3D reconstruction engine’s optimized performance. Spatial clustering techniques based on density like PVDBSCAN (Particle Varied Density Based Spatial Clustering of Applications with Noise) eliminate image outliers. Hence, PVDBSCAN is selected in this work for its capability to handle a variety of outliers. Clustering based on Information theory is also used in this work to identify cultural object’s image views which are then reconstructed using 3D motions. The proposed scheme is benchmarked with DBSCAN (Density-Based Spatial Clustering of Applications with Noise) to prove the proposed scheme’s efficiency. Evaluation on a dataset of about 31,000 cultural heritage images being retrieved from internet collections with many outliers indicate the robustness and cost effectiveness of the proposed method towards a reliable and just-in-time 3D reconstruction than existing state-of-the-art techniques.
EN
Recognizing the cancer genes from the microarray dataset is considered as the most essential research topic in bioinformatics and computational biology domain. Microarray dataset represents the state of each cell at the molecular level which is identified as the important diagnostic tool in medical field. Analyzing the microarray data may provide a huge support for cancer gene classification. Therefore recently a number of artificial intelligence and machine learning techniques are developed which utilize the microarray data for distinguishing the cancer and non-cancer cells. But still now these techniques does not achieved a satisfactory performance. Therefore, an efficient technique that provides a crisp output for cancer classification is required. To overcome such defect, an enhanced ANFIS (EANFIS) method is used in this proposed architecture for classifying the cancer genes. The convergence time of ANFIS gets increased during learning process, therefore to avoid such issue the Manta ray foraging optimization (MaFO) algorithm is hybrid along with ANFIS which improves the overall classification performance. The data given as an input to the classification process is pre-processed at the initial phase using the Ensemble Kalman Filter (EnKF) technique. After pre-processing, the genes having similar properties are clustered using an adaptive density-based spatial clustering with noise (ADBSCAN) clustering technique. Finally, the performance of proposed enhanced ANFIS is evaluated using the precision, accuracy, f-measure, recall, sensitivity, and specificity metrics. Further, the clustering based performance evaluation is also carried out using the cluster index metrics. Finally, the comparison with the state-of-the-art techniques is also performed to show the effectiveness of proposed approach.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.