Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  denoising threshold
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
With improved technological successions, wireless communication applications have been incessantly evolving. Owing to the challenges posed by the multipath wireless channel, radio design prototypes have become elemental in all wireless systems before deployment. Further, different signal processing requirements of the applications, demand a highly versatile and reconfigurable radio such as Software Defined Radio (SDR) as a crucial device in the design phase. In this paper, two such SDR modules are used to develop an Orthogonal Frequency Division Multiplexing (OFDM) wireless link, the technology triumphant ever since 4G. In particular, a non-coherent end-to-end OFDM wireless link is developed in the Ultra High Frequency (UHF) band at a carrier frequency of 470 MHz. The transmitter includes Barker sequences as frame headers and pilot symbols for channel estimation. At the receiver, pulse alignment using Max energy method, frame synchronization using sliding correlator approach and carrier offset correction using Moose algorithm are incorporated. In addition, wireless channel is estimated using Least Square (LS) based pilot aided channel estimation approach with denoising threshold and link performance is analyzed using average Bit Error Rate (BER), in different pilot symbol scenarios. In a typical laboratory environment, the results of BER versus receiver gain show that with 4 pilot symbols out of 128 carriers, at a gain of 20 dB, BER is 0.160922, which is reduced to 0.136884 with 16 pilot symbols. The developed link helps OFDM researchers to mitigate different challenges posed by the wireless environment and thereby strengthen OFDM technology.
EN
Massive multi input multi output (MIMO) systems incorporate orthogonal frequency division multiplexing (OFDM) technology to render high data rate services for future wireless communication applications. The channel estimator (CE) employed by a reliable massive MIMO-OFDM system requires huge amount of overhead in the form of known and null data transmissions, hence limiting the system spectral efficiency (SE). Often, CE design is a tradeoff between SE and system reliability. In this paper, CE with three different overhead arrangements, namely time domain synchronous (TDS), comb type with cyclic prefix (CTCP), 2D grid type with cyclic prefix (GTCP) are investigated and a GTCP based CE is proposed which offers both high SE and improved system reliability. The proposed CE uses autocorrelation based denoising threshold for channel impulse response (CIR) estimation and does not require any knowledge of channel statistics (KCS). A416 MIMO-OFDM system is simulated in a rayleigh fading channel environment with U-shaped doppler spectrum. From the bit error rate (BER) performance results in WiMax SUI-4, Advanced Television Technology Center (ATTC) and Brazil A channel environments, it is verified that the proposed CE with GTCP overhead and proposed denoising scheme, indeed improves both SE and system reliability. Hence it is suitable for application in all massive MIMO-OFDM systems.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.