Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  dendritic growth
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Purpose: During weld metal structure formation the possibility of impact on its mechanical properties are much more limited in comparison with metallurgy and technology of steel production. Adding of the inoculants to the welding pool is one of the promising methods of influencing the structure and mechanical properties of the weld metal. Design/methodology/approach: Cellular automata (CA) with additions of finite difference method (FDM) is one of the best ways to simulate dendritic growth process with the surfaceactive inoculants. It`s easy to add new rules of interaction between the inoculants and dendrite surface to the cellular automata model. Findings: It was found that average distance between primary dendrites axis decrease with increase of the inoculants wetting angle by melt iron. Obtained results were confirmed experimentally on weld metal samples that were obtained by the welding of HSLA steels with the surface-active inoculants. Research limitations/implications: The inoculants with size that comparable with cells size of the model (≈0.4 microns) were distributed evenly in computational area. Practical implications: Adding of surface-active inoculants to the melt metal improve structure and mechanical properties of weld metal. Different refractory particles (TiC, TiN, SiC, TiO2, Al2O3 and ZrO2) can be used. Originality/value: Refractory inoculants adding to the melt metal are wide used in metallurgy as crystallization centers and heat absorbers. Inoculants that were added to the welding pool of high-strength low-alloyed (HSLA) steel welds could also influence on crystallization processes of weld metal as surface active particles. In the contact point between the dendrite surface and the surface-active inoculant, a surface energy is change depending of the inoculant surface properties. Different refractory particles (TiC, TiN, SiC, TiO2, Al2O3 and ZrO2) were used.
EN
Some materials-related microstructural problems calculated using the phase-field method are presented. It is well known that the phase field method requires mesh resolution of a diffuse interface. This makes the use of mesh adaptivity essential especially for fast evolving interfaces and other transient problems. Complex problems in 3D are also computationally challenging so that parallel computations are considered necessary. In this paper, a parallel adaptive finite element scheme is proposed. The scheme keeps the level of node and edge for 2D and level of node and face for 3D instead of the complete history of refinements to facilitate derefinement. The information is local and exchange of information is minimized and also less memory is used. The parallel adaptive algorithms that run on distributed memory machines are implemented in the numerical simulation of dendritic growth and capillary-driven flows.
EN
A new model for dendritic growth is worked out to describe solute microsegregation, solute redistribution and amount of non-equlibrium precipitates. The model contains both extreme modes of solidification: the equilibrium solidification (lever rule) and the non-equilibrium solidification (the Scheils model). The current theory is given in two steps: first, to describe the effect of partioning on the behaviour of the liquid and solid/liquid interface, next the effect of back-diffusion on the solute microsegregation and redistribution within the solid. Both real and theoretical redistribution of the Zn-solute within Al-75Zn alloy are taken into account to show the model application. The back-diffusion parameter is calculated due to measurement of the Zn-solute redistribution. The so-called threshold back-diffusion parameter for a given nominal concentration of zinc is also calculated. The physical meaning of both the back-diffusion parameter and redistribution coefficient is shown on the basis of the equilibrium phase diagram. Both, coefficient of extent and intensity of redistribution are taken into account in analysis. The real amount of precipitates is compared to that predicted by theoretical calculation.
PL
Opracowano nowy model wzrostu dendrytów pozwalający opisać segregację składnika stopowego oraz ilość wydzieleń nierównowagowych. Model zawiera w sobie dwa znane ekstremalne przypadki krystalizacji, tj. : równowagową (regułę dźwigni) i nierównowagową, czyli tzw. model Scheila, jako przypadki szczególne. Proponowana teoria opracowana jest dwustopniowo; najpierw opisano wpływ współczynnika rozdziału na zachowanie się cieczy oraz frontu krystalizacji a następnie wpływ dyfuzji wstecznej na redystrybucję wewnątrz dendrytu. W pracy poddano analizie redystrybucję cynku dla przypadku krystalizacji stopu Al-75Zn. Na tej podstawie wyznaczono parametr dyfuzji wstecznej dla danego procesu oraz tzw. progową wartość tego parametru dla analizowanego stopu. Zinterpretowano fizykalne znaczenie parametru dyfuzji wstecznej jak też współczynnika redystrybucji na tle diagramu fazowego. Ponadto, analizowano współczynniki rozprzestrzeniania i intensywności redystrybucji. Rzeczywista ilość wydzieleń porównana została z ilością wyznaczoną teoretycznie.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.