The interface characteristics, bending and impact behavior, as well as fracture characteristics of stainless steel clad plates fabricated by vacuum hot rolling at different rolling temperatures of 1100°C, 1200°C and 1300°C are investigated in detail. The interface bonding strength is gradually increased with the increasing rolling temperature due to the sufficient diffusion behavior of alloy element. The bending toughness and impact toughness are gradually decreased, while the bending strength increase with the increase of the rolling temperature, which is attributed to mechanisms of matrix softening and interface strengthening at high rolling temperature. Due to the weak interface at 1100°C, the bending and impact crack propagation path was displaced by delamination cracks, which in turn lead to reduction in stress intensity of the main crack, playing an effective role in toughening the stainless steel clad plates. Moreover, the impact fracture morphologies of clad plates show a typical ductile-brittle transition phenomenon, which is attributed to the matrix softening behavior with the increasing rolling temperature.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
An analytical approach for investigation of delamination cracks in three-dimensional functionally graded linear-elastic beams was developed. Beams which are functionally graded along their width, height and length were analyzed. The fracture was studied in terms of the strain energy release rate. Beams loaded by a combination of bending moments and an axial force were considered. The approach was applied to determine the strain energy release rate for a delamination crack in a functionally graded beam of rectangular cross-section loaded in eccentric tension. An additional analysis was performed by using the beam strain energy for verification. The effects of material gradient and crack length on the delamination were evaluated.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.