We investigate the unique solvability of a class of nonlinear nonlocal differential equations associated with degenerate linear operator at the fractional Caputo derivative. For the main results, we use the theory of fractional calculus and (L, p)-boundedness technique that based on the analysis of both strongly (L, p)-sectorial operators and strongly (L, p)-radial operators. The obtained results are applicable to degenerate fractional Cauchy and Showalter–Sidorov problems in Banach spaces. Finally, we give an application described by time-fractional order Oskolkov system.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.