Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  deep convolutional neural network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
This paper tries to introduce a new intelligent method for the early fault diagnosis of diesel engines. Firstly, infrared thermography (IRT) is introduced into diesel engine condition monitoring, then infrared images of diesel engines in four health states, such as normal condition, single-cylinder misfire, multi-cylinder misfire and air filter blockage, are collected and the region of interest (ROI) of infrared images are extracted. Next, conditional generative adversarial network (CGAN) is deployed to perform data augmentation on infrared image datasets. Then, deep convolutional neural network (DCNN) and Softmax regression (SR) classifier are used for automatically extracting infrared image fault features and pattern recognition, respectively. Finally, a comparison with three deep learning (DL) models is performed. The validation results show that the data augmentation method proposed in the paper can significantly improve the early fault diagnosis accuracy, and DCNN has the best fault diagnosis effect andresistance to temperature fluctuation interference among the four DL models.
EN
As Earth observation technology has advanced, the volume of remote sensing big data has grown rapidly, offering significant obstacles to efficient and effective processing and analysis. A convolutional neural network refers to a neural network that covers convolutional calculations. It is a form of deep learning, and convolutional neural networks have characterization learning characteristics, which can classify information into different data. Remote Sensing Data Processing from various sensors has been attracting with more information in Remote Sensing. Remote sensing data is generally adjusted and refined through image processing. Image processing techniques, such as filtering and feature detection, are ideal for dealing with the high-dimensionality of geographically distributed systems. The geological entity is a term in geological work which refers to the product of geological processes that occupy a certain space in the Earth’s crust and are different from other materials. They are of different sizes and are divided into different types according to their size. It mainly focuses on improving classification accuracy and accurately describing scattering types. For geological entity recognition, this paper proposed a Deep Convolutional Neural Network Polarized Synthetic Aperture Radar (DCNN-PSAR). It is expected to use deep convolutional neural network technology and polarized SAR technology to explore new methods of geological entities and improve geological recognition capabilities. With the help of Multimodal Remote Sensing Data Processing, it is now possible to characterize and identify the composition of the Earth’s surface from orbital and aerial platforms. This paper proposes a ground object classification algorithm for polarized SAR images based on a fully convolutional network, which realizes the geological classification function and overcomes the shortcomings of too long. The evaluation of DCNN-PSAR shows that the accuracy of the water area is showing a rising trend, and the growth rate is relatively fast in the early stage, which directly changes from 0.14 to 0.6. Still, the increase is slower in the later stage. DCNN-PSAR achieves the highest quality of remote sensing data extraction.
EN
Objectives: Spinal cord damage is one of the traumatic situations in persons that may cause the loss of sensation and proper functioning of the muscles either temporarily or permanently. Hence, steps to assure the recovery through the early functioning and precaution could safe-guard a proper interceptive. To ensure the recovery of spinal cord damage through optimized recurrent neural network. Methods: The research on the spinal cord injury classification and level detection is done using the CT images, which is initially given to the segmentation that is done using the adaptive thresholding methodology. Once the segments are formed, the disc is localized using the sparse fuzzy C-means clustering approach. In the next step, the features are extracted from the localized disc and the features include the connectivity features, statistical features, image-level features, grid-level features, Histogram of Oriented Gradients (HOG), and Linear Gradient Pattern (LGP). Then, the injury detection is done based on the Crow search Rider Optimization algorithm-based Deep Convolutional Neural Network (CS-ROA-based DCNN). Once the result regarding the presence of the injury is obtained, the injury-level classification is done based on the proposed Deep Recurrent Neural Network (Deep RNN), and in case of the absence of injury, the process is terminated. Therefore, the injury detection classifier derives the level of the injury, such as normal, wedge, biconcavity, and crush. Results: The experimentation is carried out using an Osteoporotic vertebral fractures database. The performance of the injury level detection based on the proposed model is evaluated based on accuracy, sensitivity, and specificity. The proposed model achieves the maximal accuracy of 0.895, maximal sensitivity of 0.871, and the maximal specificity of 0.933 with respect to K-Fold. Conclusions: The experimental results show that the proposed model is better than the existing models in terms of accuracy, sensitivity, and specificity.
EN
Anterior cruciate ligament (ACL) injury is one of the most common injuries in high-demand sports. Due to long-term treatment of this injury, diagnosing recovery of ACL becomes important, particularly six months postoperatively. The purpose of this research is to provide a cost-effective and intelligent method to diagnose ACL's health status. For this purpose, 11 healthy and 27 ACL-injured subjects have been selected. In the proposed method, the athlete performs a single-leg landing protocol and surface electromyographic signals (EMG) are taken from eight lower limb muscles. Then, time–frequency distributions of EMG signals in each landing are calculated as an image, using pseudo Wigner–Ville distribution (PWVD), which are the inputs of a deep convolutional neural network (DCNN). By time–frequency analysis, it has been made clear that any change in ACL's health status causes changes in the extent of energy spread in PWVD, distribution volume, frequency content, damping rate and the peak value of EMG signals. In this research, a new relationship between ACL's health status and lower limb muscles activity is introduced through monitoring of PWVD images. The result indicates that the designed expert system is able to diagnose ACL's health status with 95.8% accuracy. In this non-invasive method, PWVD images of EMG signals are chosen as the inputs of DCNN, instead of MRI images, which, in addition to their high accuracy in diagnosing, are safer and much cheaper. The presented method can play an important role in assessing the recovery process, six months postoperatively and after that.
EN
The aim of this paper is to compare the performance of four deep convolutional neural networks in theproblem of image-based automated detection of concrete surface cracks in the case of a small dataset. Thiscrack detection problem is treated as a binary classification problem, and it is solved by training a deepconvolutional neural network on the small dataset. In this context, overfitting during training was the mainissue to cope with and various techniques were applied to overcome this issue. The results of the experi-ments suggest that the best approach for this problem is to use the pretrained convolutional base of a largepretrained convolutional neural network as an automatic feature extraction method and adding a new bi-nary classifier on top of the convolutional base. Then, at the training the new classifier and fine-tuningthe last few layers of the pretrained network take place at the same time. The classification accuracy of thebest deep convolutional neural network on the testing set is about 94%.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.