Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  deep autoencoder
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In medical image processing, brain tumor detection and segmentation is a challenging and time-consuming task. Magnetic Resonance Image (MRI) scan analysis is a powerful tool in the recent technology that makes effective detection of the abnormal tissues from the brain. In the brain image, the size of a tumor can be varied for different patients along with the minute details of the tumor. It is a difficult task to diagnose and classify the tumor from numerous images for the radiologists. This paper developed a brain tumor classification using a hybrid deep autoencoder with a Bayesian fuzzy clustering-based segmentation approach. Initially, the pre-processing stage is performed using the non-local mean filter for denoising purposes. Then the BFC (Bayesian fuzzy clustering) approach is utilized for the segmentation of brain tumors. After segmentation, robust features such as, information-theoretic measures, scattering transform (ST) and wavelet packet Tsallis entropy (WPTE) methods are used for the feature extraction process. Finally, a hybrid scheme of the DAE (deep autoencoder) based JOA (Jaya optimization algorithm) with a softmax regression technique is utilized to classify the tumor part for the brain tumor classification process. The proposed scheme is implemented in a MATLAB environment. The simulation results are conducted by the BRATS 2015 database which proved that the proposed approach obtained the high classification accuracy (98.5 %) when compared to other state-of-art methods.
EN
This paper proposes a new framework for medical data processing which is essentially designed based on deep autoencoder and energy spectral density (ESD) concepts. The main novelty of this framework is to incorporate ESD function as feature extractor into a unique deep sparse auto-encoders (DSAEs) architecture. This allows the proposed architecture to extract more qualified features in a shorter computational time compared with the conventional frameworks. In order to validate the performance of the proposed framework, it has been tested with a number of comprehensive medical waveform datasets with varying dimensionality, namely, Epilepsy Serious Detection, SPECTF Classification and Diagnosis of Cardiac Arrhythmias. Overall, the ESD function speeds up the deep auto-encoder processing time and increases the overall accuracy of the results which are compared to several studies in the literature and a promising agreement is achieved.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.