Ograniczanie wyników
Czasopisma help
Autorzy help
Lata help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 37

Liczba wyników na stronie
first rewind previous Strona / 2 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  damage mechanics
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 2 next fast forward last
EN
In a corrosive environment with coupled dry-wet-sulfate action, concrete structures are susceptible to erosion by sulfate ions, which seriously affects the safe operating life. To forecast the operational lifetime of concrete below the influence of the dry-wet cycle and sulfate erosion environment, four different admixtures of polypropylene fiber: 0, 0.6, 0.9, and 1.2 kg/m3, were incorporated into concrete specimens, and indoor accelerated tests were designed to observe the macroscopic and microscopic deterioration law analysis of concrete specimens; using the precept of damage mechanics, the damage of concrete under solubility cycle was established. The damage evolution equation of concrete under freeze-thaw cycles was established and the operational life of concrete was predicted. The results showed that the overall mass loss rate of concrete specimens increased with the number of tests, and the relative energetic modulo decreased with the number of tests; the pore change pattern, microstructure, and internal material composition of specimens under different working conditions were obtained by using NMR scanning technique, SEM electron microscope scanning technique and XRD physical phase analysis technique. The damage evolution equation shows that adding a certain amount of polypropylene fiber to concrete can improve the working life of concrete under dry and wet connected sulfate assault.
EN
Results of numerical calculations of reinforced concrete (RC) beams are presented. Based on experimental results on longitudinally reinforced specimens of different sizes and shapes are investigated. Four different continuum constitutive laws with isotropic softening are used: one defined within continuum damage mechanics, an elasto-plastic with the Rankine criterion in tension and the Drucker–Prager criterion in compression, a formulation coupling elasto-plasticity and damage mechanics and the concrete damaged plasticity (CDP) model implemented in Abaqus. In a softening regime, a non-local theory of integral format is applied to the first three constitutive laws. A fracture energy approach is utilised in CDP model. An ability to reproduce different failure mechanisms observed in experiments for each constitutive model is analysed. A comparison of force-displacement curves and crack patterns between numerical and experimental outcomes is performed.
EN
Delamination crack growth is a major source of failure in composite laminates under static and fatigue loading conditions. In the present study, damage mechanics based failure models for both static and fatigue loadings are evaluated via UMAT subroutine to study the delamination crack growth phenomenon in Glass Fiber Reinforced Plastic (GFRP) composite laminates. A static local damage model proposed by Allix and Ladev`eze is modified to an non-local damage model in order to simulate the crack growth behavior due to static loading. Next, the same classical damage model is modified to simulate fatigue delamination crack growth. The finite element analysis results obtained by the proposed models are successfully compared with the available experimental data on the delamination crack growth for GFRP composite laminates.
EN
A three dimensional finite element based progressive damage model has been developed for the failure analysis of notched composite laminates. The material constitutive relations and the progressive damage algorithms are implemented into finite element code ABAQUS using user-defined subroutine UMAT. The existing failure criteria for the composite laminates are modified by including the failure criteria for fiber/matrix shear damage and delamination effects. The proposed numerical model is quite efficient and simple compared to other progressive damage models available in the literature. The efficiency of the present constitutive model and the computational scheme is verified by comparing the simulated results with the results available in the literature. A parametric study has been carried out to investigate the effect of change in lamination scheme on the failure behaviour of notched composite laminates.
5
EN
A new generalized hypothesis of elastic energy equivalence is proposed. The proposed generalized hypothesis is inclusive of all the existing different hypotheses of equivalence in continuum damage mechanics and all are obtained as special cases. Specifically, the hypothesis of elastic strain equivalence and the hypothesis of elastic energy equivalence are obtained as special cases of the generalized hypothesis proposed here. In addition, the generalized hypothesis has some unusual properties when the integer exponent n approaches infinity. In particular, it turns out that the strain energy density function is a vector for even values of the integer exponent. This conclusion is totally unexpected but an attempt is made to explain this result based on geometry.
EN
The rock materials surrounding the underground excavations typically demonstrate nonlinear mechanical response and irreversible behavior in particular under high in-situ stress states. The dominant causes of irreversible behavior are plastic flow and damage process. The plastic flow is controlled by the presence of local shear stresses which cause the frictional sliding. During this process, the net number of bonds remains unchanged practically. The overall macroscopic consequence of plastic flow is that the elastic properties (e.g. the stiffness of the material) are insensitive to this type of irreversible change. The main cause of irreversible changes in quasi-brittle materials such as rock is the damage process occurring within the material. From a microscopic viewpoint, damage initiates with the nucleation and growth of microcracks. When the microcracks length reaches a critical value, the coalescence of them occurs and finally, the localized meso-cracks appear. The macroscopic and phenomenological consequence of damage process is stiffness degradation, dilatation and softening response. In this paper, a coupled elastoplastic-logarithmic damage model was used to simulate the irreversible deformations and stiffness degradation of rock materials under loading. In this model, damage evolution & plastic flow rules were formulated in the framework of irreversible thermodynamics principles. To take into account the stiffness degradation and softening on post-peak region, logarithmic damage variable was implemented. Also, a plastic model with Drucker-Prager yield function was used to model plastic strains. Then, an algorithm was proposed to calculate the numerical steps based on the proposed coupled plastic and damage constitutive model. The developed model has been programmed in VC++ environment. Then, it was used as a separate and new constitutive model in DEM code (UDEC). Finally, the experimental Oolitic limestone rock behavior was simulated based on the developed model. The irreversible strains, softening and stiffness degradation were reproduced in the numerical results. Furthermore, the confinement pressure dependency of rock behavior was simulated in according to experimental observations.
PL
Zachowanie materiału skalnego otaczającego wyrobiska podziemne w odpowiedzi na wysokie stany lokalnych naprężeń działających in situ jest zazwyczaj nieodwracalne i nieliniowe. Reakcje nieodwracalne spowodowane są w głównej mierze przez płynięcie plastyczne i procesy uszkodzeń. Płynięcie plastyczne uwarunkowane jest przez występowanie lokalnych naprężeń ścinających powodujące obsunięcia skał. W trakcie tego procesu ilość wiązań netto pozostaje praktycznie niezmieniona. Całościowy efekt płynięcia plastycznego w skali makroskopowej polega na tym, że właściwości elastyczne (np. sztywność) stają się niewrażliwe na działanie nieodwracalnych procesów tego rodzaju. Podstawową przyczyną reakcji nieodwracalnych reakcji w materiałach quasi-kruchych, do których należą skały, jest powstawanie uszkodzeń wewnątrz materiału. W skali mikroskopowej, proces uszkodzenia rozpoczyna się od zainicjowania i stopniowej propagacji mikro-pęknięć. Gdy długość mikro- pęknięć osiągnie wartość graniczną, zaczynają one łączyć się ze sobą w rezultacie powodując powstanie lokalnych mezo-pęknięć. W ujęciu makroskopowym i fenomenologicznym, następstwami procesu uszkodzenia jest obniżenie sztywności, powstawanie dylatacji szczelin oraz miękniecie materiału. W pary wykorzystano sprzężony model elastoplastyczno- logarytmiczny do symulacji nieodwracalnych odkształceń i utraty sztywności materiału skalnego pod wpływem naprężeń. W modelu tym ewolucje uszkodzeń i opis płynięcia plastycznego sformułowano w oparciu o reguły nieodwracalnych przemian termodynamicznych. Aby uwzględnić utratę sztywności oraz miękniecie materiału w obszarach gdzie występowały największe naprężenia wykorzystano zmienną logarytmiczną opisującą uszkodzenie. Odkształcenia plastyczne zamodelowano z wykorzystaniem modelu plastycznego opartego na warunku plastyczności Drukera-Pragera. Zaproponowano także algorytm do obliczania kolejnych kroków procedury numerycznej, oparty na zaproponowanym modelu plastycznym oraz konstytutywnym modelu uszkodzeń. Opracowany model pracuje w środowisku VC++. Został on następnie wykorzystany jako osobny, nowy model konstytutywny zapisany w kodzie DEM (UDEC). W części końcowej przeprowadzono symulację zachowania wapienia oolitowego w oparciu o zaproponowany model. Nieodwracalne odkształcenia, utrata sztywności zostały odtworzone w postaci wyników procedury numerycznej. Ponadto, przeprowadzono symulacje zachowania skał w zależności od działającego na nie ciśnienia w oparciu o obserwacje eksperymentalne.
EN
In the paper, the authors discuss the construction of a model of an exemplary urban layout. Numerical simulation has been performed by means of a commercial software Fluent using two different turbulence models: the popular k-ε realizable one, and the Reynolds Stress Model (RSM), which is still being developed. The former is a 2-equations model, while the latter – is a RSM model – that consists of 7 equations. The studies have shown that, in this specific case, a more complex model of turbulence is not necessary. The results obtained with this model are not more accurate than the ones obtained using the RKE model. The model, scale 1:400, was tested in a wind tunnel. The pressure measurement near buildings, oil visualization and scour technique were undertaken and described accordingly. Measurements gave the quantitative and qualitative information describing the nature of the flow. Finally, the data were compared with the results of the experiments performed. The pressure coefficients resulting from the experiment were compared with the coefficients obtained from the numerical simulation. At the same time velocity maps and streamlines obtained from the calculations were combined with the results of the oil visualisation and scour technique.
EN
The aim of the paper is to validate the use of measurement methods in the study of GFRP joints. A number of tests were carried out by means of a tensile machine. The studies were concerned with rivet connection of composite materials. One performed two series of tests for two different forces and two fibre orientations. Using Finite Element Method (FEM) and Digital Image Correlation (DIC), strain maps in the test samples were defined. The results obtained with both methods were analysed and compared. The destructive force was analysed and, with the use of a strain gauge, the clamping force in a plane parallel to the annihilated sample was estimated. Destruction processes were evaluated and models of destruction were made for this type of materials taking into account their connections, such as riveting.
EN
A computational model for the damage analysis in the axially loaded nanopillar arrays was developed on the basis of the Fibre Bundle Model and hierarchical load sharing protocol. The nanopillars are characterised by random strength-thresholds drawn according to the nanoscale Weibull statistics. We study the influence of the coordination number and the number of hierarchy levels on the system strength, size of the catastrophic avalanche and probability of breakdown.
EN
We apply the Fibre Bundle Model to study critical loads and catastrophic avalanches in arrays of axially loaded nanopillars under so-called local load sharing. Nanopillars with assigned random strength-thresholds are located in the nodes of the supporting square lattice. We analyzed different mixtures of weak and strong pillars, i.e. we use distributions of strength-thresholds drawn from two different uniform distributions.
EN
The paper presents the experimental results of fabrication and characterization of ceramic- elastomer composites. They were obtained using pressure infiltration of porous ceramics by elastomer As a result the composites in which two phases are interpenetrating three-dimensionally and topologically throughout the microstructure were obtained. In order to enhance mechanical properties of preforms a high isostatic pressure method was utilized. The obtained ceramic preforms with porosity gradient within the range of 20-40% as well as composites were characterized by X-ray tomography. The effect of volume fraction of pores on residual porosity of composites was examined. These results are in accordance with SEM images which show the microstructure of composites without any delaminations and voids. Such composites exhibit a high initial strength with the ability to sustain large deformations due to combining the ceramic stiffness and rubbery elasticity of elastomer. Static compression tests for the obtained composites were carried out and the energy dissipated during compression was calculated as the area under the stress-strain curve. The dynamic behavior of the composite was investigated using the split Hopkinson pressure bar technique. It was found that ceramic-elastomer composites effectively dissipate the energy. Moreover, a ballistic test was carried out using armor piercing bullets.
12
Content available Preliminary studies of riveted joints at feed force
EN
The aim of the study was to determine the feasibility of riveted joints in composites materials. Static tensile test method was used. In the test one type of glass fabric was used (Interglas 92140) from which two types of composite samples were prepared. In each sample the same type of fiber with the same fiber orientation – 3 layers - was used. The samples had dimensions of 100×100 mm and thickness of approximately 1 mm. The composite probes were located in a metal frame with a screw connection which was made of screws with nominal thread pitch M5. Screws were tightened with constant torque. It was to provide an axial force to the sample during the tensile test. The frame was placed between cross-bars of tensile machine INSTRON 8516. The samples were stretched at a speed of 0.05 mm/s at a distance up to 15 mm. During the tensile test displacement of the samples and pull force were registered. Depending on the fibre orientations and the value of feed force, damage models were described. On the basis of the results the possibility of usage of aluminium rivet nuts connections in composite materials was determined.
EN
We study mechanical-damage avalanches occurring in axially loaded nanopillars located in the nodes of the supporting square lattice. Nanopillars are treated as fibres in the framework of the stochastic Fibre Bundle Model and they are characterised by random strength thresholds. Once an element crashes, its load is transferred to the other intact elements according to a given load transfer rule. In this work we use a modified range variable model including an anisotropic-stress-transfer function. Avalanches of broken nanopillars, critical loads and clusters of damaged nanopillars are analysed by varying both the anisotropy and effective range coefficients.
14
Content available remote Governing Differential Equations for the Mechanics of Undamageable Materials
EN
In this work the mathematical foundations of the mechanics of elastic undamageable materials are presented. In particular the governing differential equations are derived for both the scalar and tensorial cases. In the isotropic case it is found that the resulting scalar differential equations are simple and easy to solve. However, in the anisotropic case the tensorial differential equations are complicated and unsolvable at this time. The current work presents the solution in the form of explicit nonlinear stress-strain relations for the simple one-dimensional case. However, the general solution of the three-dimensional case remains unattainable at the present time. Only the governing tensorial differential equations are derived for this latter case. It is to be noted that the term “undamageable” is reflected in the context of the material stiffness and not the property of indestructibility due to various loading conditions. Thus, the undamageable material reflects that no microcracks or microvoids occur as well as no plastic yielding in the material. To illustrate this concept, a last section is added on applications.
EN
The paper presents results of FE simulations of the concrete behaviour under quasi-static and dynamic loading. For quasi-static cyclic analyses, an enhanced coupled elasto-plastic-damage constitutive model has been used. To take the effect of the loading velocity into account, viscous and inertial terms have been also included. To ensure the mesh-independence and to properly reproduce strain localization in the entire range of strain rates, a constitutive formulation has been enhanced by a characteristic length of micro-structure by means of a non-local theory. Numerical results have been compared with some corresponding laboratory tests.
EN
Analysis of stresses and displacements around underground openings is necessary in a wide variety of civil, petroleum and mining engineering problems. In addition, an excavation damaged zone (EDZ) is generally formed around underground openings as a result of high stress magnitudes even in the absence of blasting effects. The rock materials surrounding the underground excavations typically demonstrate nonlinear and irreversible mechanical response in particular under high in situ stress states. The dominant cause of irreversible deformations in brittle rocks is damage process. One of the most widely used methods in tunnel design is the convergence-confinement method (CCM) for its practical application. The elastic-plastic models are usually used in the convergence-confinement method as a constitutive model for rock behavior. The plastic models used to simulate the rock behavior, do not consider the important issues such as stiffness degradation and softening. Therefore, the use of damage constitutive models in the convergence-confinement method is essential in the design process of rock structures. In this paper, the basic concepts of continuum damage mechanics are outlined. Then a numerical stepwise procedure for a circular tunnel under hydrostatic stress field, with consideration of a damage model for rock mass has been implemented. The ground response curve and radius of excavation damage zone were calculated based on an isotropic damage model. The convergence-confinement method based on damage model can consider the effects of post-peak rock behavior on the ground response curve and excavation damage zone. The analysis of results show the important effect of brittleness parameter on the tunnel wall convergence, ground response curve and excavation damage radius.
PL
Analiza naprężeń i przemieszczeń powstałych wokół otworu podziemnego wymagana jest przy szerokiej gamie projektów z zakresu budownictwa lądowego, inżynierii górniczej oraz naftowej. Ponadto, wokół otworu podziemnego powstaje strefa naruszona działalnością górniczą wskutek oddziaływania wysokich naprężeń, nawet w przypadku gdy nie są prowadzone prace strzałowe. Reakcja materiału skalnego znajdującego się w otoczeniu wyrobisk podziemnych jest zazwyczaj procesem nieliniowym i nieodwracalnym, zwłaszcza w stanach wysokich naprężeń in situ. Główną przyczyną nieodwracalnych odkształceń skał kruchych jest pękanie. Jedną z najczęściej stosowanych metod w projektowaniu tuneli (wyrobisk podziemnych) jest metoda konwergencji i zamknięcia, popularna ze względu na zakres zastosowań. Metoda ta zazwyczaj wykorzystuje modele sprężysto- plastyczne, jako konstytutywne modele zachowania skał. Modele plastyczne wykorzystywane dotychczas do symulacji zachowania skał nie uwzględniają pewnych kluczowych aspektów, takich jak obniżenie sztywności czy rozmiękczanie. Dlatego też zastosowanie konstytutywnych modeli w metodzie konwergencji i zamknięcia jest sprawą kluczową przy projektach obejmujących struktury skalne. W pracy tej omówiono podstawowe założenia modelu continuum uszkodzeń i spękań. Zaimplementowano wielostopniową procedurę do badania tunelu o przekroju kolistym znajdującego się pod polem naprężeń hydrostatycznych, przy wykorzystaniu modelu pękania górotworu. Krzywą odpowiedzi gruntu oraz promień strefy naruszonej wybieraniem obliczono przy wykorzystaniu izotropowego modelu uszkodzeń. Metoda konwergencji i zamykania oparta na tym modelu uwzględnia zachowanie skał po wystąpieniu szczytowych naprężeń i powstaniu strefy naruszonej wybieraniem. Analiza wyników wykazała znaczny wpływ parametrów związanych z kruchością na konwergencję ścian wyrobiska, kształt krzywej odpowiedzi gruntu oraz promień strefy naruszonej wybieraniem.
PL
W artykule przedstawiono podstawowe informacje na temat mechanizmów zniszczenia metali. Przybliżono założenia modelu uwzględniającego wpływ uszkodzenia na degradację wytrzymałości materiału jak również opisano zmodyfikowany model materiału Gursona-Tvergaarda-Needlemana (GTN), który jest obecnie podstawowym modelem zniszczenia zalecanym w analizach stanów awaryjnych stalowych konstrukcji budowlanych. W pracy przedstawiono również wyniki numerycznej symulacji zniszczenia elementu rozciąganego wykonanego ze stali S235JR. Zastosowanie modelu GTN z powodzeniem umożliwiło określenie nośności analizowanego elementu oraz pozwoliło na symulację zniszczenia w oparciu o analizę wzrostu mikrouszkodzeń.
EN
The article presents basic information on the damage mechanisms in metals. The application of a general model which takes into account the impact of the damage on material strength degradation is presented, as well as a modified Gurson-Tvergaard-Needleman (GTN) material model, which is currently recommended as a basic model to apply in the analysis of pre-failure states in steel building structures. The paper presents a numerical simulation of a failure of a tensile element made of steel S235JR. The use of GTN model has successfully enabled an estimate of the carrying capacity of the analysed element and allowed a simulation of damage basing on the analysis of microdamage growth.
EN
The paper presents two-dimensional FE simulation results of the concrete behaviour under quasi-static cyclic loading using different enhanced coupled elasto-plastic-damage continuum models. Attention is paid to strain localization and stiffness degradation under tensile bending failure. To ensure the mesh-independence, to properly reproduce strain localization and to capture a deterministic size effect, all constitutive models include a characteristic length of micro-structure by means of a non-local theory. Numerical results are compared with corresponding cyclic laboratory tests on concrete specimens under bending. Advantages and disadvantages of coupled models used are outlined. In addition, numerical aspects of implementation and non-local averaging of coupled models are discussed. Finally, a new improved model is proposed to describe strain localization simultaneously under both tension and compression.
19
Content available remote Modelowanie konstrukcji powłokowej z uwzględnieniem procesu rozwoju uszkodzeń
PL
Rozwój metod numerycznych i dostępność szybkich komputerów umożliwia zastosowanie coraz bardziej złożonych modeli teoretycznych zaimplementowanych w programach komputerowych (np. ABAQUS, [1], pozwalających na projektowanie z wykorzystaniem rezerw nośności konstrukcji. Modele te pozwalają na analizę nukleacji, wzrostu i propagacji mikrouszkodzeń w warunkach pełzania, prowadzących w konsekwencji do formowania się makrouszkodzeń, a w drugim etapie do propagacji makropęknięć tworzących front zniszczenia. Podstawowym problemem projektowym będzie takie ujęcie zagadnienia, by w przewidywanym czasie eksploatacji konstrukcji nie dopuścić do zapoczątkowania drugiego etapu eksploatacji, natomiast w przypadku pojawienia się pierwszych makropęknięć należy określić czas pozostały do całkowitego zniszczenia przekroju nośnego. W pracy przeprowadzono badania możliwości opisu konstrukcji powierzchniowych, w warunkach ewolucji kruchego uszkodzenia, przez przyjęty model matematyczny. Zastosowano tensorowy model konstytutywny [2], z uwzględnieniem zmiennej sztywności materiału opisanej tensorem uszkodzeń, włączony do programu ABAQUS w procedurze użytkownika UMAT. Otrzymane wyniki dowodzą możliwości praktycznego zastosowania przyjętego sformułowania konstytutywnego do modelowania konstrukcji inżynierskich.
EN
Engineering structures frequently exhibit changeable stress fields, caused by e.g. micro crack growth. As a consequence of this growth the deterioration of material properties, such as rupture toughness, strength, rigidity and lifetime reductions should be modelled. The process of damage growth usually accelerates after the first crack appears, followed by macrocracks, which combine together changing the structure thickness. The numerical study of this phenomenon is proposed with a special interest in the time of initial macroscopic cracks appearance at a point, the location of the first cracks and rupture front propagation, the physical properties of the structure material which affect the possible mechanisms of the damage front development and the mode of the failure front propagation. A way of numerical modeling of the failure front propagation in structures is of particular interest addressed in this study.
EN
The ability to determine the bearing life time is one of the main purposes in maintenance of rotating machineries. Because of reliability, cost and productivity, the bearing life time prognostic is important. In this paper, a stiffness-based prognostic model for bearing systems is discussed. According to presumed model of bearing and fundamental of damage mechanics, damage curve approach is used to relate stiffness of vibratory system and bearing running life. Furthermore, using the relation between acceleration amplitude at natural frequency and stiffness, final relation between acceleration amplitude at natural frequency and running life time according to damage curve approach can be established and the final running time is predicted. Experiments have been performed on self alignment bearing under failures on inner race and outer race to calibrate and to validate the proposed model. The comparison between model-calculated data and experimental results indicates that this model can be used effectively to predict the failure lifetime and the remaining life of a bearing system.
first rewind previous Strona / 2 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.