Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  czynniki glebowe
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Soil is the material base of soil fertility. It can not only fix the root system but also provide nutrients, water, and other necessary conditions for crops to promote growth of crops. As a characteristic agricultural product in the Yanbian area, the production of 'Pingguoli' is related to the development of the agricultural economy in the Yanbian area. To solve the agricultural problems caused by excessive fertilisation in 'Pingguoli' orchards in the Yanbian area and to study the correlation between rare elements and soil properties. Based on the collection of regional natural economic background and soil data in the study area, four treatments were set up: The soil and 'Pingguoli' samples were collected, and the total amount of rare earth elements in the soil samples and the related indexes of 'Pingguoli' fruit were detected. Soil is the material basis of soil fertility, and soil management determines crop growth. CF1 treatment could increase 'Pingguoli' yield and significantly improve fruit quality. The rate of fruit softening and bad fruit decreased significantly after storage. Reduction of fertilisation can improve quality and save cost, among which CF1 has the best effect and can obtain more benefits when applied in production. Implications: Through experiments, agricultural workers can be more deeply aware of the importance of soil to crops; reducing fertilisation can lead to better crop yield and quality while achieving greater benefits, and consumers can get healthier food.
EN
It has been observed that leaf morphology shift within species is linked to climate change, but there are few studies on the effects of altitude change on leaf morphology of species. We hypothesized that similar to climate change, a morphological shift within species would occur over time under different growing altitudes. In this study, we evaluated three dominant grass species: Elymus nutans Griseb., Kobresia capillifolia Clarke., Carex moorcroftii Boott., taking advantage of the altitudinal variations (3000-4000 a.s.l.) on the Qinghai-Tibetan Plateau. Our study showed that almost all leaf traits of these three species had significant differences (P <0.05) across an altitudinal gradient. Different species responded differently to altitude change. Leaf thickness (LT) of the three species increased with increase in altitude. Leaf area (LA) of E. nutans and C. moorcroftii decreased with increasing altitude, but that of K. capillifolia increased. There was no obvious linear effect on leaf dry matter content (LDMC) and specific leaf area (SLA) of these three species. LDMC of E. nutans and C. moorcroftii showed a trend of increase, while that of K. capillifolia decreased. SLA of E. nutans and K. capillifolia showed a trend of increase, but that of C. moorcroftii decreased with increase in altitude. In addition, soil pH (pH) and air temperature (AT) decreased with increase in altitude. However, other soil and climate factors increased as altitude increased. The finding of this work is that leaf morphology shift within species happens under altitude change to adapt to specific environment.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.